JEE Main & Advanced AIEEE Solved Paper-2003

  • question_answer
    If the sum of the roots of the quadratic equation \[a{{x}^{2}}+bx+c=0\] is equal to the sum of the squares f their reciprocals, then \[\frac{a}{c},\frac{b}{a}\], and \[\frac{c}{b}\] are in     AIEEE  Solved  Paper-2003

    A) arithmetic progression                 

    B) geometric progression

    C) harmonic progression

    D) arithmetico-geometric progression

    Correct Answer: C

    Solution :

    If a, p be the roots of the equation                     \[\alpha {{x}^{2}}+bx+c+0\], then                     \[\alpha +\beta =-\frac{b}{\alpha }\] and \[\alpha \beta =\frac{c}{\alpha }\]. Given equation is                     \[a{{x}^{2}}+bx+c=0\] Let \[\alpha ,\beta \] be the roots of this equation. Then,        \[\alpha +\beta =-\frac{b}{a}\] and            \[\alpha \beta =\frac{c}{a}\]                       Also,          \[\alpha +\beta =\frac{1}{{{\alpha }^{2}}}+\frac{1}{{{\beta }^{2}}}\]                     \[=\frac{{{\alpha }^{2}}+{{\beta }^{2}}}{{{\alpha }^{2}}{{\beta }^{2}}}\]             \[\Rightarrow \]   \[\alpha +\beta =\frac{{{(\alpha +\beta )}^{2}}-2\alpha \beta }{{{({{\alpha }^{2}}\beta )}^{2}}}\]             \[\Rightarrow \]   \[\alpha +\beta ={{\left( \frac{\alpha +\beta }{\alpha \beta } \right)}^{2}}-\frac{2}{\alpha \beta }\]             \[\Rightarrow \]   \[\left( -\frac{b}{a} \right)={{\left( \frac{-b/a}{c/a} \right)}^{2}}-\frac{2}{c/a}\]             \[\Rightarrow \]   \[-\frac{b}{a}={{\left( \frac{b}{c} \right)}^{2}}-\frac{2a}{c}\]             \[\Rightarrow \]   \[\frac{2a}{c}={{\left( \frac{b}{c} \right)}^{2}}+\frac{b}{a}\]             \[\Rightarrow \]   \[\frac{2a}{c}=\frac{b}{c}\left[ \frac{b}{c}+\frac{c}{a} \right]\]             \[\Rightarrow \]   \[\frac{2a}{b}=\left( \frac{b}{c}+\frac{c}{a} \right)\] \[\Rightarrow \frac{c}{a},\frac{a}{b},\frac{b}{c}\] are in AP. \[\Rightarrow \frac{a}{c},\frac{b}{a},\frac{c}{b}\] are in HP.


You need to login to perform this action.
You will be redirected in 3 sec spinner