JEE Main & Advanced AIEEE Solved Paper-2003

  • question_answer
    If \[{{x}_{1}},{{x}_{2}},{{x}_{3}}\] and \[{{y}_{1}},{{y}_{2}},{{y}_{3}}\] are both in GP with the same common ratio, then the points \[({{x}_{1}},{{y}_{1}}),\,({{x}_{2}},{{y}_{2}})\] and \[({{x}_{3}},{{y}_{3}})\]      AIEEE  Solved  Paper-2003

    A) lie on a straight                

    B) line lie on an ellipse

    C) lie on a circle

    D) are vertices of a triangle

    Correct Answer: A

    Solution :

    If \[{{x}_{1}},{{x}_{2}},{{x}_{3}}\] and \[{{y}_{1}},{{y}_{2}},{{y}_{3}}\] are in GP, then let               \[{{x}_{2}}=r\,{{x}_{1}}\],             \[{{x}_{3}}={{r}^{2}}{{x}_{1}}\] and            \[{{y}_{2}}=r\,{{y}_{1}}\],             \[{{y}_{3}}={{r}^{2}}\,{{y}_{1}}\]      with common ratio /", then the points are             \[({{x}_{1}},{{y}_{1}}),\,(r{{x}_{1}},r{{y}_{1}})\] and \[({{r}^{2}}{{x}_{1}},{{r}^{2}}{{y}_{1}})\]. Now, \[\left| \begin{matrix}    {{x}_{1}} & {{y}_{1}} & 1  \\    {{x}_{2}} & {{y}_{2}} & 1  \\    {{x}_{3}} & {{y}_{3}} & 1  \\ \end{matrix} \right|=\left| \begin{matrix}    {{x}_{1}} & y{{ & }_{1}} & 1  \\    r\,{{x}_{1}} & r\,{{y}_{1}} & 1  \\    {{r}^{2}}{{x}_{1}} & {{r}^{2}}{{y}_{1}} & 1  \\ \end{matrix} \right|\]             Taking \[{{x}_{1}}\] common from \[{{C}_{1}}\] and \[{{y}_{1}}\] from \[{{C}_{2}}\]                                     \[={{x}_{1}}{{y}_{1}}\left| \begin{matrix}    1 & 1 & 1  \\    r & r & 1  \\    {{r}^{2}} & {{r}^{2}} & 1  \\ \end{matrix} \right|\]                                     \[={{x}_{1}}{{y}_{1}}=(0)=0\]                     (since, two columns are identical) Thus, these points lie on a straight line.             Alternate Solution Let \[{{x}_{1}}=a\Rightarrow {{x}_{2}}=ar\] and \[{{x}_{3}}=a{{r}^{2}}\] and \[y=b\Rightarrow {{y}_{2}}=br\] and \[{{y}_{3}}=b{{r}^{2}}\] Let the points are A(a, b), B(ar, br) and \[C(a{{r}^{2}},b{{r}^{2}})\]. Now,         slope of \[AB=\frac{b(r-1)}{a(r-1)}=\frac{b}{a}\]             and            slope of \[BC=\frac{b({{r}^{2}}-r)}{a({{r}^{2}}-r)}=\frac{b}{a}\] \[\because \]         Slope of AB = Slope of BC             \[\Rightarrow \]   \[AB||BC\] But B is a common point. \[\therefore \] A, B and C are collinear points. i.e., the points \[({{x}_{1}},{{y}_{1}}),\,({{x}_{2}},{{y}_{2}})\] and \[({{x}_{3}},{{y}_{3}})\] lie on a straight line.


You need to login to perform this action.
You will be redirected in 3 sec spinner