JEE Main & Advanced AIEEE Solved Paper-2013

  • question_answer
    ABCD is a trapezium such that AB and CD are parallel and\[BC\bot CD\]. If\[\angle ADB=\theta ,\text{ }BC=p\] and\[CD=q,\]then AB is equal to:     AIEEE Solevd Paper-2013

    A) \[\frac{({{p}^{2}}\text{+}{{q}^{2}})sin\theta }{p\,cos\,\theta +q\,sin\,\theta }\]

    B)        \[\frac{{{p}^{2}}+{{q}^{2}}cos}{p\,cos\,\theta +q\,sin\,\theta }\]

    C) \[\frac{{{p}^{2}}+{{q}^{2}}}{{{p}^{2}}cos\,\theta +{{q}^{2}}sin\,\theta }\]

    D)        \[\frac{({{p}^{2}}+{{q}^{2}})\sin \theta }{{{(pcos\,\theta +qsin\,\theta )}^{2}}}\]

    Correct Answer: A

    Solution :

    \[BD=\sqrt{{{p}^{2}}+{{q}^{2}}}\] \[\angle ABD=\angle BDC=\alpha \] \[\Rightarrow \]\[\angle DAB=\pi -(\theta +\alpha )\] \[tan\text{ }\alpha =\frac{p}{q}\] \[\Delta ABD\] \[\frac{AB}{\sin \text{ }\theta }=\frac{BD}{\sin (\pi -(\theta +\alpha ))}=\frac{BD}{\sin (\theta +\alpha )}\] \[\therefore \] \[AB=\frac{BD\sin \theta }{\sin (\theta +\alpha )}=\frac{B{{D}^{2}}\sin \theta }{BD\sin (\theta +\alpha )}=\] \[\frac{B{{D}^{2}}\sin \theta }{BD\sin \theta \cos \alpha +BD\cos \theta \sin \alpha }=\frac{({{p}^{2}}+{{q}^{2}})\sin \theta }{q\sin \theta +p\cos \theta }\]


You need to login to perform this action.
You will be redirected in 3 sec spinner