NEET AIPMT SOLVED PAPER 1998

  • question_answer
                    A thin circular ring of mass M and radius r is rotating about its axis with a constant angular velocity \[\omega \]. Two objects each of mass m are attached gently to the opposite ends of diameter of the ring. The ring will now rotate with an angular velocity:

    A)                 \[\frac{\omega \,(M-2\,m)}{(M+2m)}\]                

    B)                 \[\frac{\omega M}{(M+2m)}\]

    C)                                            \[\frac{\omega \,M}{(M+m)}\]

    D)                                            \[\frac{\omega \,(M+2\,m)}{M}\]

    Correct Answer: B

    Solution :

                    Key Idea: Angular momentum remains conserved in the universe.                 According to conservation of angular momentum                 L = constant or            \[I\omega =\text{constant}\] \[\therefore {{I}_{1}}{{\omega }_{1}}={{I}_{2}}{{\omega }_{2}}\]                 Initial moment of inertia                 \[{{I}_{1}}=M{{R}^{2}}\]                 and angular velocity                 \[{{\omega }_{1}}=\omega \]                 Hence,   \[{{I}_{1}}{{\omega }_{1}}=M{{R}^{2}}\omega \]                 When two objects of mass m are attached to opposite ends of a diameter, the final readings are                 \[{{I}_{2}}=M\,{{R}^{2}}+m\,{{R}^{2}}+m\,{{R}^{2}}\]                 \[=(M+2m)\,{{R}^{2}}\]                 So,          \[{{I}_{2}}{{\omega }_{2}}=(M+2m){{R}^{2}}{{\omega }_{2}}\]                   ....(iii)                 \[\therefore \]  From Eqs. (i), (ii) and (iii)                 \[M{{R}^{2}}\,\omega \,=\,(M+2m)\,{{R}^{2}}\,{{\omega }_{2}}\]                 \[\Rightarrow {{\omega }_{2}}=\frac{\omega M}{M+2m}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner