NEET AIPMT SOLVED PAPER 2003

  • question_answer
                    A convex lens is dipped in a liquid whose refractive index is equal to the refractive index of the lens. Then its focal length will:                                                                                                                                              

    A)                 become small, but non-zero                                      

    B)                 remain unchanged         

    C)                 become zero                                                                    

    D)                 become infinite

    Correct Answer: D

    Solution :

                    From lens maker?s formula                 \[\frac{1}{f}=({{\mu }_{g}}-1)\,\left( \frac{1}{{{R}_{1}}}-\frac{1}{{{R}_{2}}} \right)....(i)\]                 When convex lens is dipped in a liquid of refractive index \[({{\mu }_{1}})\]then its focal length                 \[\frac{1}{{{f}_{l}}}=\left( \frac{{{\mu }_{g}}}{{{\mu }_{1}}}-1 \right).\left( \frac{1}{{{R}_{1}}}-\frac{1}{{{R}_{2}}} \right)\]                 \[or\frac{1}{{{f}_{1}}}=\frac{({{\mu }_{g}}-{{\mu }_{l}})}{{{\mu }_{t}}}\left( \frac{1}{{{R}_{1}}}-\frac{1}{{{R}_{2}}} \right)\]                          ....(ii)                 Dividing Eq. (i) by Eq. (ii), we get                 \[\frac{{{f}_{l}}}{f}=\frac{({{\mu }_{g}}-1){{\mu }_{l}}}{({{\mu }_{g}}-{{\mu }_{l}})}\]                                        ....(iii)                 But it is given that refractive index of lens is equal to refractive index of liquid i.e., \[{{\mu }_{g}}={{\mu }_{l}}\].                 Hence, Eq. (iii) gives,                 \[\frac{{{f}_{l}}}{f}=\frac{({{\mu }_{g}}-1){{\mu }_{l}}}{0}=\,\infty \]                        (infinity)


You need to login to perform this action.
You will be redirected in 3 sec spinner