NEET AIPMT SOLVED PAPER MAINS 2012

  • question_answer
    Given that the equilibrium constant for the reaction,\[2S{{O}_{2}}(g)+{{O}_{2}}(g)2S{{O}_{3}}(g)\]has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature?\[S{{O}_{3}}(g)S{{O}_{2}}(g)+\frac{1}{2}{{O}_{2}}(g)\]                                       

    A)  \[1.8\times {{10}^{-3}}\]             

    B)  \[3.6\times {{10}^{-3}}\]             

    C)  \[6.0\times {{10}^{-2}}\]             

    D)  \[1.3\times {{10}^{-5}}\]

    Correct Answer: C

    Solution :

    \[2S{{O}_{2}}(g)+{{O}_{2}}2S{{O}_{3}}(g)\] Equilibrium constant for this reaction, \[K=\frac{{{[S{{O}_{3}}]}^{2}}}{{{[S{{O}_{2}}]}^{2}}[{{O}_{2}}]}\]                               ...(i) \[S{{O}_{3}}(g)S{{O}_{2}}(g)+\frac{1}{2}{{O}_{2}}(g)\] Equilibrium constant for this reaction,                 \[K'=\frac{[S{{O}_{2}}]{{[{{O}_{2}}]}^{\frac{1}{2}}}}{[S{{O}_{3}}]}\]                           ?(ii) On squaring Eq. (ii) both sides, we have                    \[{{(K')}^{2}}=\frac{{{[S{{O}_{2}}]}^{2}}[{{O}_{2}}]}{{{[S{{O}_{3}}]}^{2}}}\]                                 \[=\frac{1}{K}\]                                 \[=\frac{1}{278}\] \[\therefore \]                  \[K'=\sqrt{\frac{1}{278}}\]                                 \[=\sqrt{0.003597}\]                                 \[=5.99\times {{10}^{-2}}\]                                 \[\approx 6\times {{10}^{-2}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner