NEET AIPMT SOLVED PAPER SCREENING 2004

  • question_answer
    If\[|\overset{\to }{\mathop{A}}\,\,\,\,\times \overset{\to }{\mathop{B}}\,|\,=\sqrt{3}\overset{\to }{\mathop{A\,}}\,.\overset{\to }{\mathop{B\,}}\,\], then the value of\[\left| \text{A}+\text{B} \right|\]is :

    A)                                                                 \[{{({{A}^{2}}+{{B}^{2}}+AB)}^{1/2}}\]

    B) \[{{\left( {{A}^{2}}+{{B}^{2}}+\frac{AB}{\sqrt{3}} \right)}^{1/2}}\]

    C) \[A+B\]       

    D) \[{{({{A}^{2}}+{{B}^{2}}+\sqrt{3}AB)}^{1/2}}\]

    Correct Answer: A

    Solution :

            Key Idea: \[\overset{\to }{\mathop{A}}\,\,\times \,\overset{\to }{\mathop{B}}\,=AB\sin \theta \] and\[\overset{\to }{\mathop{A}}\,\,.\,\overset{\to }{\mathop{B}}\,=AB\cos \theta \] Given, \[|\overset{\to }{\mathop{A}}\,\,\,\times \,\overset{\to }{\mathop{B}}\,|=\sqrt{3}\overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\,\]...(i) but\[|\overset{\to }{\mathop{A}}\,\,\,\times \,\overset{\to }{\mathop{B}}\,|=|\overset{\to }{\mathop{A}}\,||\overset{\to }{\mathop{B}}\,|\sin \theta =AB\sin \theta \] and\[\overset{\to }{\mathop{A}}\,.\,\overset{\to }{\mathop{B}}\,=|\overset{\to }{\mathop{A}}\,||\overset{\to }{\mathop{B}}\,|\cos \theta =AB\cos \theta \] Make these substitution in Eq. (i), we get \[AB\sin \theta =\sqrt{3}AB\cos \theta \] or    \[\tan \theta =\sqrt{3}\] \[\therefore \]          \[\theta ={{60}^{0}}\]    The addition of vector \[\overset{\to }{\mathop{A}}\,\] and \[\overset{\to }{\mathop{B}}\,\] can be given by the law of parallelogram. \[\therefore \]\[|\overset{\to }{\mathop{A}}\,+\overset{\to }{\mathop{B}}\,|=\sqrt{{{A}^{1}}+{{B}^{2}}+2AB\cos \,{{60}^{0}}}\] \[|=\sqrt{{{A}^{2}}+{{B}^{2}}+2AB\times \frac{1}{2}}\] \[{{({{A}^{2}}+{{B}^{2}}+AB)}^{1/2}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner