BCECE Engineering BCECE Engineering Solved Paper-2002

  • question_answer
    If \[{{z}_{k}}=\cos \frac{\theta }{{{2}^{k}}}+i\sin \frac{\theta }{{{2}^{k}}}\]where\[k=1,2,3,....,\]and \[\theta =2n\pi ,n\in \operatorname{I},\]then \[{{z}_{1}},{{z}_{2}},{{z}_{3}},....\infty \]is equal to

    A)  0                                            

    B)  1

    C)  \[-1\]                   

    D)         \[i\]

    Correct Answer: B

    Solution :

    We have, \[{{z}_{k}}=\cos \frac{\theta }{{{2}^{k}}}+i\,\sin \frac{\theta }{{{2}^{k}}}\] \[={{e}^{i\frac{\theta }{{{2}^{k}}}}}\]                 Put, \[k=1,2,3,....\infty \]                 \[{{z}_{1}}={{e}^{i\frac{\theta }{2}}},{{z}_{2}}={{e}^{i\frac{\theta }{{{2}^{2}}}}},{{z}_{3}}={{e}^{i\frac{\theta }{{{2}^{3}}}}}.,....\]                 \[\therefore \]\[{{z}_{1}}.{{z}_{2}}.{{z}_{3}}....={{e}^{\frac{i\theta }{2}}}.{{e}^{\frac{i\theta }{{{2}^{2}}}}}.{{e}^{\frac{i\theta }{{{2}^{3}}}}}....\] \[={{e}^{i\,\theta \,\left( \frac{1}{2}+\frac{1}{{{2}^{2}}}+\frac{1}{{{2}^{3}}}+... \right)}}\] \[={{e}^{i\,2n\pi \left( \frac{1/2}{1-1/2} \right)}}\] [\[\because \,\theta =2n\pi \]given]                                 \[=\cos 2n\pi +i\sin 2n\pi \]                                 \[=1\]


You need to login to perform this action.
You will be redirected in 3 sec spinner