BCECE Engineering BCECE Engineering Solved Paper-2003

  • question_answer
    \[{{g}_{e}}\] and\[{{g}_{p}}\] denote the acceleration due to gravity on the surface of the earth and another planet whose mass and radius are twice to that of the earth, then:

    A)  \[{{g}_{p}}=\frac{{{g}_{e}}}{2}\]                              

    B)        \[{{g}_{p}}={{g}_{e}}\]

    C)        \[{{g}_{p}}=2{{g}_{e}}\]               

    D)        \[{{g}_{p}}=\frac{{{g}_{e}}}{\sqrt{2}}\]

    Correct Answer: A

    Solution :

    Acceleration due to gravity is given by \[g=\frac{GM}{{{R}^{2}}},\] where G is gravitational constant. For earth:            \[{{g}_{e}}=\frac{G{{M}_{e}}}{{{R}_{e}}}\]                 For planet:          \[{{g}_{p}}=\frac{G{{M}_{p}}}{R_{p}^{2}}\]                 Therefor,             \[\frac{{{g}_{e}}}{{{g}_{p}}}=\frac{G{{M}_{e}}/R_{e}^{2}}{G{{M}_{p}}/R_{p}^{2}}\]                 or            \[\frac{{{g}_{e}}}{{{g}_{p}}}\frac{{{M}_{e}}}{{{M}_{p}}}\times \frac{R_{p}^{2}}{R_{e}^{2}}\]                                       ?(i)                 Given,   \[{{M}_{p}}=2{{M}_{e}},{{R}_{p}}=2{{R}_{e}}\] Putting the values in the Eq. (i), we obtain                                 \[\frac{{{g}_{e}}}{{{g}_{p}}}=\frac{{{M}_{e}}}{2{{M}_{e}}}\times \frac{\left( 2R_{e}^{2} \right)}{R_{e}^{2}}\]                                 \[=\frac{1}{2}\times \frac{4}{1}\]                                 \[=2\]                 \[\therefore \]  \[{{g}_{p}}=\frac{{{g}_{e}}}{2}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner