BVP Medical BVP Medical Solved Paper-2012

  • question_answer
    Consider the following gaseous equilibria with equilibrium constants \[{{K}_{1}}\] and \[{{K}_{2}}\] respectively \[S{{O}_{2}}(g)+\frac{1}{2}{{O}_{2}}(g)S{{O}_{3}}(g)\]\[2S{{O}_{3}}(g)2S{{O}_{2}}(g)+{{O}_{2}}(g)\] The equilibrium constants are related as

    A)  \[K_{1}^{2}=\frac{1}{{{K}_{2}}}\]                            

    B)  \[2{{K}_{1}}=K_{2}^{2}\]

    C)  \[{{K}_{2}}=\frac{2}{K_{1}^{2}}\]                            

    D)  \[K_{2}^{2}=\frac{1}{{{K}_{1}}}\]

    Correct Answer: A

    Solution :

                    For the reaction, \[S{{O}_{2}}(g)+\frac{1}{2}{{O}_{2}}(g)S{{O}_{3}}(g)\] Equilibrium constant, \[{{K}_{1}}=\frac{[S{{O}_{3}}]}{[S{{O}_{2}}]{{[{{O}_{2}}]}^{1/2}}}\] ?.(i) For the reaction, \[2S{{O}_{3}}(g)2S{{O}_{2}}(g)+{{O}_{2}}(g)\] Equilibrium constant, \[{{K}_{2}}=\frac{{{[S{{O}_{2}}]}^{2}}[{{O}_{2}}]}{{{[S{{O}_{3}}]}^{2}}}\].....(ii) On squaring both sides in Eq. (i), we get \[K_{1}^{2}=\frac{{{[S{{O}_{3}}]}^{2}}}{{{[S{{O}_{2}}]}^{2}}[{{O}_{2}}]}\]             ??(iii) Eqs. (ii) \[\times \] Eq. (iii), we get                 \[K_{1}^{2}\times {{K}_{2}}=1\] or            \[{{K}_{2}}=\frac{1}{K_{1}^{2}}\] or            \[K_{1}^{2}=\frac{1}{{{K}_{2}}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner