CEE Kerala Engineering CEE Kerala Engineering Solved Paper-2003

  • question_answer
    \[\int{{{x}^{2}}{{(ax+b)}^{-2}}dx}\]is equal to:

    A)  \[\frac{2}{{{a}^{2}}}\left( x-\frac{b}{a}\log (ax+b) \right)+c\]

    B)  \[\frac{2}{{{a}^{2}}}\left( x-\frac{b}{a}\log (ax+b) \right)-\frac{{{x}^{2}}}{a(ax+b)}+c\]

    C)  \[\frac{2}{{{a}^{2}}}\left( x+\frac{b}{a}\log (ax+b) \right)+\frac{{{x}^{2}}}{a(ax+b)}+c\]

    D)  \[\frac{2}{{{a}^{2}}}\left( x+\frac{b}{a}\log (ax+b) \right)-\frac{{{x}^{2}}}{a(ax+b)}+c\]

    E)  \[\frac{2}{{{a}^{2}}}\left( x-\frac{b}{a}\log (ax+b) \right)+\frac{{{x}^{2}}}{a(ax+b)}+c\]

    Correct Answer: B

    Solution :

    Let \[I=\int{\frac{{{x}^{2}}}{{{(ax+b)}^{2}}}}dx\] Put          \[ax+b=t\] \[\Rightarrow \]               \[dx=\frac{1}{a}dt\]and\[x=\left( \frac{t-b}{a} \right)\] \[\therefore \]  \[I=\frac{1}{{{a}^{3}}}\int{\frac{{{(t-b)}^{2}}}{{{t}^{2}}}}dt\] \[=\frac{1}{{{a}^{3}}}\int{\left( 1+\frac{{{b}^{2}}}{{{t}^{2}}}-\frac{2b}{t} \right)}dt\] \[=\frac{1}{{{a}^{3}}}\int{\left( t-\frac{{{b}^{2}}}{t}-2b\,\log t \right)}+c\] \[=\frac{1}{{{a}^{3}}}\int{\left( ax+b-\frac{{{b}^{2}}}{ax+b}-2b\log (ax+b) \right)}+c\] \[=\frac{2}{{{a}^{2}}}\left( x-\frac{b}{a}\log (ax+b) \right)-\frac{{{x}^{2}}}{a(ax+b)}+c\]


You need to login to perform this action.
You will be redirected in 3 sec spinner