CEE Kerala Engineering CEE Kerala Engineering Solved Paper-2009

  • question_answer
    If \[\alpha ,\,\beta ,\,\gamma \] are the cube roots of unity, then the value of the determinant\[\left| \begin{matrix}    {{e}^{\alpha }} & {{e}^{2\alpha }} & ({{e}^{3\alpha }}-1)  \\    {{e}^{\beta }} & {{e}^{2\beta }} & ({{e}^{2\beta }}-1)  \\    {{e}^{\gamma }} & {{e}^{2\gamma }} & ({{e}^{3\gamma }}-1)  \\ \end{matrix} \right|\]is equal to

    A)  \[-2\]                                   

    B)  \[-1\]

    C)  0                            

    D)         1

    E)  2

    Correct Answer: C

    Solution :

    Given,\[\alpha ,\beta \]and\[\gamma \]are the cube roots of unity, then assume\[\alpha =1,\text{ }\beta =\omega \]and\[\gamma ={{\omega }^{2}}\]. \[\therefore \]\[\left| \begin{matrix}    {{e}^{\alpha }} & {{e}^{2\alpha }} & {{e}^{3\alpha }}-1  \\    {{e}^{\beta }} & {{e}^{2\beta }} & {{e}^{3\beta }}-1  \\    {{e}^{\gamma }} & {{e}^{2\gamma }} & {{e}^{3\gamma }}-1  \\ \end{matrix} \right|\] \[=\left| \begin{matrix}    {{e}^{\alpha }} & {{e}^{2\alpha }} & {{e}^{3\alpha }}  \\    {{e}^{\beta }} & {{e}^{2\beta }} & {{e}^{3\beta }}  \\    {{e}^{\gamma }} & {{e}^{2\gamma }} & {{e}^{3\gamma }}  \\ \end{matrix} \right|+\left| \begin{matrix}    {{e}^{\alpha }} & {{e}^{2\alpha }} & -1  \\    {{e}^{\beta }} & {{e}^{2\beta }} & -1  \\    {{e}^{\gamma }} & {{e}^{2\gamma }} & -1  \\ \end{matrix} \right|\] \[={{e}^{\alpha }}{{e}^{\beta }}{{e}^{\gamma }}\left| \begin{matrix}    1 & {{e}^{\alpha }} & {{e}^{2\alpha }}  \\    1 & {{e}^{\beta }} & {{e}^{2\beta }}  \\    1 & {{e}^{\gamma }} & {{e}^{2\gamma }}  \\ \end{matrix} \right|-\left| \begin{matrix}    1 & {{e}^{\alpha }} & {{e}^{2\alpha }}  \\    1 & {{e}^{\beta }} & {{e}^{2\beta }}  \\    1 & {{e}^{\gamma }} & {{e}^{2\gamma }}  \\ \end{matrix} \right|\] \[=\left| \begin{matrix}    1 & {{e}^{\alpha }} & {{e}^{2\alpha }}  \\    1 & {{e}^{\beta }} & {{e}^{2\beta }}  \\    1 & {{e}^{\gamma }} & {{e}^{2\gamma }}  \\ \end{matrix} \right|-[{{e}^{\alpha }}{{e}^{\beta }}{{e}^{\gamma }}-1]=0\]                 \[(\because {{e}^{\alpha }}{{e}^{\beta }}{{e}^{\gamma }}={{e}^{1+\omega +{{\omega }^{2}}}}={{e}^{0}}=1)\]


You need to login to perform this action.
You will be redirected in 3 sec spinner