Solved papers for CEE Kerala Engineering CEE Kerala Engineering Solved Paper-2005

done CEE Kerala Engineering Solved Paper-2005

  • question_answer1) The frequency of X-rays, \[\gamma \]-rays and ultraviolet rays are respectively a, b and c then:

    A) \[a<b,\text{ }b>c\]

    B) \[a>b,\text{ }b>c\]

    C) \[a>b,\text{ }b<c\]

    D) \[a<b,\text{ }b<c\]

    E) \[a=b=c\]

    View Answer play_arrow
  • question_answer2) If c is the speed of electromagnetic waves in vacuum, its speed in a medium of dielectric constant K and relative permeability\[{{\mu }_{r}}\]is:

    A) \[v=\frac{1}{\sqrt{{{\mu }_{r}}K}}\]

    B) \[v=c\sqrt{{{\mu }_{r}}K}\]

    C) \[v=\frac{c}{\sqrt{{{\mu }_{r}}K}}\]

    D) \[v=\frac{K}{\sqrt{{{\mu }_{r}}c}}\]

    E) \[v=\frac{{{\mu }_{r}}}{\sqrt{cK}}\]

    View Answer play_arrow
  • question_answer3) A red coloured object illuminated by mercury vapour lamp, when seen through a green filter, will appear:

    A) red

    B) blue

    C) violet

    D) white

    E) black

    View Answer play_arrow
  • question_answer4) Time taken by sunlight to pass through a window of thickness 4 mm whose refractive index is\[\frac{3}{2}\]is:

    A) \[2\times {{10}^{-4}}s\]

    B) \[2\times {{10}^{4}}s\]

    C) \[2\times {{10}^{-11}}s\]

    D) \[2\times {{10}^{11}}s\]

    E) \[2\times {{10}^{8}}s\]

    View Answer play_arrow
  • question_answer5) Two thin lenses of focal length 20 cm and 25 cm are in contact. The effective power of the combination is:

    A) 4.5 D

    B) 18 D

    C) 45 D

    D) 2.5 D

    E) 9 D

    View Answer play_arrow
  • question_answer6) The magnification of the image when an object is placed at a distance\[x\]from the principal focus of a mirror of focal length\[f\]is:

    A) \[\frac{x}{f}\]

    B) \[1+\frac{f}{x}\]

    C) \[\frac{f}{x}\]

    D) \[1-\frac{f}{x}\]

    E) \[\frac{1+f}{x}\]

    View Answer play_arrow
  • question_answer7) In the Youngs double slit experiment, the central maxima is observed to be\[{{I}_{0}}\]. If one of the slits is covered, then the intensity at the central maxima will become:

    A) \[\frac{{{I}_{0}}}{2}\]

    B) \[\frac{{{I}_{0}}}{\sqrt{2}}\]

    C) \[\frac{{{I}_{0}}}{4}\]

    D) \[{{I}_{0}}\]

    E) \[I_{0}^{2}\]

    View Answer play_arrow
  • question_answer8) The ratio of the de-Broglie wavelength of an \[\alpha -\]particle and a proton of same kinetic energy is:

    A) \[1:2\]

    B) \[1:1\]

    C) \[1:\sqrt{2}\]

    D) \[4:1\]

    E) \[\sqrt{2}:1\]

    View Answer play_arrow
  • question_answer9) Which of the following is not conserved in nuclear reaction?

    A) Total energy

    B) Mass number

    C) Charge number

    D) Nucleon number

    E) Number of fundamental particles

    View Answer play_arrow
  • question_answer10) The number of \[\alpha \]-particles and p-particles respectively emitted in the reaction\[_{88}{{A}^{196}}{{\to }_{78}}{{B}^{164}}\]are:

    A) 8 and 8

    B) 8 and 6

    C) 6 and 8

    D) 6 and 6

    E) 8 and 4

    View Answer play_arrow
  • question_answer11) The counting rate observed from a radioactive source ate = 0 s was 1600 count/s and at\[t=8\]s it was 100 counts/s. The counting rate observed as counts per second at\[t=6\text{ }s,\]will be:

    A) 400

    B) 300

    C) 250

    D) 200

    E) 150

    View Answer play_arrow
  • question_answer12) If\[{{D}_{e}},\text{ }{{D}_{b}}\]and\[{{D}_{c}}\]are the doping levels of emitter, base and collector respectively of a transistor, then:

    A) \[{{D}_{e}}={{D}_{b}}={{D}_{c}}\]

    B) \[{{D}_{e}}<{{D}_{b}}={{D}_{c}}\]

    C) \[{{D}_{e}}>{{D}_{b}}>{{D}_{c}}\]

    D) \[{{D}_{e}}<{{D}_{b}}<{{D}_{c}}\]

    E) \[{{D}_{e}}>{{D}_{c}}>{{D}_{b}}\]

    View Answer play_arrow
  • question_answer13) The relation between a and p parameters of a transistor is:

    A) \[\alpha =\frac{1+\beta }{\beta }\]

    B) \[\alpha =\frac{1-\beta }{\beta }\]

    C) \[\alpha =\frac{\beta }{1+\beta }\]

    D) \[\alpha =\frac{\beta }{1-\beta }\]

    E) \[\alpha =\beta \]

    View Answer play_arrow
  • question_answer14) A p-n junction in series with a resistance of\[5\,k\Omega \]is connected across a 50 V DC source. If the forward bias resistance of the junction is\[50\,\Omega ,\], the forward bias current is:

    A) 8.8 mA

    B) 1 mA

    C) 2 mA

    D) 20 mA

    E) 9.9 mA

    View Answer play_arrow
  • question_answer15) A transistor connected at common-emitter mode contains load resistance of\[5\,k\,\Omega ,\]and an input resistance of\[1\,k\,\Omega \]. If the input peak voltage is 5 mV and the current gain is 50, find the voltage gain:

    A) 250

    B) 500

    C) 125

    D) 50

    E) 75

    View Answer play_arrow
  • question_answer16) If\[{{n}_{1}}\]and\[{{n}_{2}}\]are the refractive indices of the core and the cladding respectively of an optic fibre, then:

    A) \[{{n}_{1}}={{n}_{2}}\]

    B) \[{{n}_{1}}<{{n}_{2}}\]

    C) \[{{n}_{2}}<{{n}_{1}}\]

    D) \[{{n}_{2}}=2{{n}_{1}}\]

    E) \[{{n}_{2}}=\sqrt{2{{n}_{1}}}\]

    View Answer play_arrow
  • question_answer17) If a radio receiver amplifies all the signal frequencies equally well, it is said to have high:

    A) fidelity

    B) distortion

    C) sensibility

    D) sensitivity

    E) selectivity

    View Answer play_arrow
  • question_answer18) The waves relevant to telecommunications are:

    A) visibe light

    B) infrared

    C) ultraviolet

    D) microwave

    E) none of the above

    View Answer play_arrow
  • question_answer19) A TV tower has a height of 100 m. What is the maximum distance up to which the TV transmission can be received\[(R=8\times {{10}^{6}}m)\]?

    A) 34.77 km

    B) 32.70 km

    C) 40 km

    D) 40.70 km

    E) 42.75 km

    View Answer play_arrow
  • question_answer20) The dimensional formula of magnetic flux is:

    A) \[[{{M}^{1}}{{L}^{0}}{{T}^{-2}}{{A}^{-1}}]\]

    B) \[[{{M}^{1}}{{L}^{2}}{{T}^{-1}}{{A}^{-1}}]\]

    C) \[[{{M}^{1}}{{L}^{2}}{{T}^{-1}}{{A}^{-2}}]\]

    D) \[[{{M}^{1}}{{L}^{2}}{{T}^{0}}{{A}^{-1}}]\]

    E) \[[{{M}^{1}}{{L}^{2}}{{T}^{-2}}{{A}^{-1}}]\]

    View Answer play_arrow
  • question_answer21) A physical quantity A is related to four observables a, b, c and d as follows: \[A=\frac{{{a}^{2}}{{b}^{3}}}{c\sqrt{d}}\] The percentage errors of measurement in a, b, c and d are 1%, 3%, 2% and 2% respectively. What is the percentage error in the quantity A?

    A) 12%

    B) 7%

    C) 5%

    D) 16%

    E) 14%

    View Answer play_arrow
  • question_answer22) A body starting from rest moves with constant acceleration. The ratio of distance covered by the body during the 5th second to that covered in 5 s is:

    A) \[\frac{9}{25}\]

    B) \[\frac{3}{5}\]

    C) \[\frac{25}{5}\]

    D) \[\frac{1}{25}\]

    E) \[25\]

    View Answer play_arrow
  • question_answer23) The area under acceleration-time graph gives:

    A) distance travelled

    B) change in acceleration

    C) force acting

    D) change in velocity

    E) work done

    View Answer play_arrow
  • question_answer24) A particle is displaced from a position\[(2\hat{i}-\hat{j}+\hat{k})\]to another position\[(3\hat{i}+2\hat{j}-2\hat{k})\] under the action of the force of\[(2\hat{i}+\hat{j}-\hat{k})\]. The work done by the force in an arbitrary unit is:

    A) 8

    B) 10

    C) 12

    D) 16

    E) 20

    View Answer play_arrow
  • question_answer25) From the top of tower, a stone is thrown up. It reaches the ground in\[{{t}_{1}}\]second. A second stone thrown down with the same speed reaches the ground in\[{{t}_{2}}\]second. A third stone released from rest reaches the ground in\[{{t}_{3}}\]second. Then:

    A) \[{{t}_{3}}=\frac{({{t}_{1}}+{{t}_{2}})}{2}\]

    B) \[{{t}_{3}}=\sqrt{{{t}_{1}}{{t}_{2}}}\]

    C) \[\frac{1}{{{t}_{3}}}=\frac{1}{{{t}_{1}}}-\frac{1}{{{t}_{2}}}\]

    D) \[t_{3}^{2}=t_{2}^{2}-t_{1}^{2}\]

    E) \[{{t}_{3}}=\frac{({{t}_{1}}-{{t}_{2}})}{2}\]

    View Answer play_arrow
  • question_answer26) An object is projected at an angle of\[45{}^\circ \]with the horizontal. The horizontal range and maximum height reached will be in the ratio:

    A) \[1:2\]

    B) \[2:1\]

    C) \[1:4\]

    D) \[4:1\]

    E) \[4:\sqrt{2}\]

    View Answer play_arrow
  • question_answer27) If the length of the seconds hand in a stop-clock is 3 cm, the angular velocity and linear velocity of the tip is:

    A) \[0.2047\text{ }rad/s,\text{ }0.0314\text{ }m{{s}^{-1}}\]

    B) \[0.2547\text{ }rad/s,\text{ }0.314\text{ }m{{s}^{-1}}\]

    C) \[0.1472\text{ }rad/s,\text{ }0.06314\text{ }m{{s}^{-1}}\]

    D) \[0.1047\text{ }rad/s,\text{ }0.00314\text{ }m{{s}^{-1}}\]

    E) \[0.347\text{ }rad/s,\text{ }0.314\text{ }m{{s}^{-1}}\]

    View Answer play_arrow
  • question_answer28) A player caught a cricket ball of mass 150 g moving at the rate of\[20\text{ }m{{s}^{-1}}\]. If the catching process be completed in 0.1 s, the force of the blow exerted by the ball on the hands of the player is:

    A) 0.3 N

    B) 30 N

    C) 300 N

    D) 3000 N

    E) 3N

    View Answer play_arrow
  • question_answer29) A uniform metal chain is placed on a rough table such that one end of it hangs down over the edge of the table. When one-third of its length hangs over the edge, the chain starts sliding. Then, the coefficient of static friction is:

    A) \[\frac{3}{4}\]

    B) \[\frac{1}{4}\]

    C) \[\frac{2}{3}\]

    D) \[\frac{1}{3}\]

    E) \[\frac{1}{2}\]

    View Answer play_arrow
  • question_answer30) Two masses M and M/2 are joined together by means of light inextensible string passed over a frictionless pulley as shown in the figure. When the bigger mass is released, the small one will ascend with an acceleration of:

    A) \[\frac{g}{3}\]

    B) \[\frac{3g}{2}\]

    C) \[\frac{g}{2}\]

    D) g

    E) \[\frac{g}{4}\]

    View Answer play_arrow
  • question_answer31) In elastic collision:

    A) both momentum and kinetic energies are conserved

    B) both momentum and kinetic energies are not conserved

    C) only energy is conserved

    D) only mechanical energy is conserved

    E) only momentum is conserved

    View Answer play_arrow
  • question_answer32) A ball is released from the top of a tower. The ratio of work done by force of gravity in first, second and third second of the motion of the ball is:

    A) \[1:2:3\]

    B) \[1:4:9\]

    C) \[1:3:5\]

    D) \[1:5:3\]

    E) \[1:3:2\]

    View Answer play_arrow
  • question_answer33) When the kinetic energy of a body is doubled, its momentum increases by ...... times.

    A) \[\sqrt{2}\]

    B) \[2\]

    C) \[4\]

    D) \[2\sqrt{2}\]

    E) \[\frac{1}{\sqrt{2}}\]

    View Answer play_arrow
  • question_answer34) Three identical spheres, each of mass 1 kg are kept as shown in figure below, touching each other, with their centres on a straight line. If their centres are marked P, Q, R respectively, the distance of centre of mass of the system from P is:

    A) \[\frac{PQ+PR+QR}{3}\]

    B) \[\frac{PQ+PR}{3}\]

    C) \[\frac{PQ+QR}{3}\]

    D) \[\frac{PR+QR}{3}\]

    E) \[\frac{PQ+QR+PR}{6}\]

    View Answer play_arrow
  • question_answer35) The moment of inertia of a thin rod of mass M and length L, about an axis perpendicular to the rod at a distance \[\frac{L}{4}\] from one end is:

    A) \[\frac{M{{L}^{2}}}{6}\]

    B) \[\frac{M{{L}^{2}}}{12}\]

    C) \[\frac{7M{{L}^{2}}}{24}\]

    D) \[\frac{7M{{L}^{2}}}{12}\]

    E) \[\frac{7M{{L}^{2}}}{48}\]

    View Answer play_arrow
  • question_answer36) A body rolls down an inclined plane. If its kinetic energy of rotation is 40% of its kinetic energy of translation, then the body is:

    A) solid cylinder

    B) solid sphere

    C) disc

    D) ring

    E) hollow cylinder

    View Answer play_arrow
  • question_answer37) Which of the following statements about the gravitational constant is true?

    A) It is a force

    B) It has no unit

    C) It has same value in all systems of units

    D) It depends on the value of the masses

    E) It does not depend on the nature of the medium in which the bodies are kept

    View Answer play_arrow
  • question_answer38) Four particles each of mass M, are located at the vertices of a square with side L. The gravitational potential due to this at the centre of the square is:

    A) \[-\sqrt{32}\frac{GM}{L}\]

    B) \[-\sqrt{64}\frac{GM}{{{L}^{2}}}\]

    C) zero

    D) \[\sqrt{32}\frac{GM}{L}\]

    E) \[8\frac{GM}{{{L}^{2}}}\]

    View Answer play_arrow
  • question_answer39) Two identical solid copper spheres of radius R are placed in contact with each other. The gravitational attraction between them is proportional to:

    A) \[{{R}^{2}}\]

    B) \[{{R}^{-2}}\]

    C) \[{{R}^{4}}\]

    D) \[{{R}^{-4}}\]

    E) \[{{R}^{3}}\]

    View Answer play_arrow
  • question_answer40) The modulus of elasticity is dimensionally equivalent to:

    A) strain

    B) force

    C) stress

    D) coefficient of viscosity

    E) surface tension

    View Answer play_arrow
  • question_answer41) Radius of an air bubble at the bottom of the lake is r and it becomes 2 r when the air bubble rises to the top surface of the lake. If P cm of, water be the atmospheric pressure, then the depth of the lake is:

    A) 2P

    B) 8P

    C) 4P

    D) 7P

    E) 5P

    View Answer play_arrow
  • question_answer42) A manometer connected to a closed tap reads\[4.5\times {{10}^{5}}Pa\]. When the tap is opened the reading of the manometer falls to\[4\times {{10}^{5}}Pa\]. Then the velocity of flow of water is:

    A) \[7\text{ }m{{s}^{-1}}\]

    B) \[8\text{ }m{{s}^{-1}}\]

    C) \[9m{{s}^{-1}}\]

    D) \[12m{{s}^{-1}}\]

    E) \[10\text{ }m{{s}^{-1}}\]

    View Answer play_arrow
  • question_answer43) What is the velocity v of a metallic ball of radius r falling in a tank of liquid at the instant when its acceleration is one-half that of a freely falling body? (The densities of metal and of liquid are\[\rho \]and\[\sigma \]respectively, and the viscosity. of the liquid is\[\eta \]):

    A) \[\frac{{{r}^{2}}g}{9\eta }(\rho -2\sigma )\]

    B) \[\frac{{{r}^{2}}g}{9\eta }(2\rho -\sigma )\]

    C) \[\frac{{{r}^{2}}g}{9\eta }(\rho -\sigma )\]

    D) \[\frac{2{{r}^{2}}g}{9\eta }(\rho -\sigma )\]

    E) \[\frac{{{r}^{2}}g}{18\eta }(\rho -2\sigma )\]

    View Answer play_arrow
  • question_answer44) A black body has maximum wavelength\[{{\lambda }_{m}}\]at 2000 K. Its corresponding wavelength at 3000 K will be:

    A) \[\frac{3}{2}{{\lambda }_{m}}\]

    B) \[\frac{2}{3}{{\lambda }_{m}}\]

    C) \[\frac{16}{81}{{\lambda }_{m}}\]

    D) \[\frac{81}{16}{{\lambda }_{m}}\]

    E) \[\frac{4}{3}{{\lambda }_{m}}\]

    View Answer play_arrow
  • question_answer45) The value of\[\frac{PV}{T}\]for one mole of an ideal gas is nearly equal to:

    A) \[2\,J\,mo{{l}^{-1}}{{K}^{-1}}\]

    B) \[8.3\,mo{{l}^{-1}}{{K}^{-1}}\]

    C) \[4.2\,J\,mo{{l}^{-1}}{{K}^{-1}}\]

    D) \[2cal\,mo{{l}^{-1}}{{K}^{-1}}\]

    E) \[4\,cal\,mo{{l}^{-1}}{{K}^{-1}}\]

    View Answer play_arrow
  • question_answer46) The volume of a metal sphere increases by 0.24% when its temperature is raised by\[40{}^\circ \] C. The coefficient of linear expansion of the metal is...\[/{}^\circ C\].

    A) \[2\times {{10}^{-5}}\]

    B) \[6\times {{10}^{-5}}\]

    C) \[18\times {{10}^{-5}}\]

    D) \[1.2\times {{10}^{-5}}\]

    E) \[2.1\times {{10}^{-5}}\]

    View Answer play_arrow
  • question_answer47) The temperature of equal masses of three different liquids A, B and C are\[12{}^\circ C,\text{ }19{}^\circ C\]and \[28{}^\circ C\]respectively. The temperature when A and B are mixed is\[16{}^\circ C\]and when B and C are mixed is\[23{}^\circ C\]. The temperature when A and C are mixed is:

    A) \[18.2{}^\circ C\]

    B) \[22{}^\circ C\]

    C) \[20.2{}^\circ C\]

    D) \[24.2{}^\circ C\]

    E) \[20.8{}^\circ C\]

    View Answer play_arrow
  • question_answer48) The time period of the seconds hand of a watch is:

    A) \[1\,h\]

    B) \[1\,s\]

    C) \[12\,h\]

    D) \[1\text{ }min\]

    E) \[0.1\,h\]

    View Answer play_arrow
  • question_answer49) A particle starts SHM from the mean position. Its amplitude is a and total energy E. At one instant its kinetic energy is\[3\frac{E}{4}\]. Its displacement at that instant is:

    A) \[\frac{a}{\sqrt{2}}\]

    B) \[\frac{a}{2}\]

    C) \[\frac{a}{\sqrt{\left( \frac{3}{2} \right)}}\]

    D) \[\frac{a}{\sqrt{3}}\]

    E) \[a\]

    View Answer play_arrow
  • question_answer50) A particle executes linear simple harmonic motion with an amplitude of 2 cm. When the particle is at 1 cm from the mean position the magnitude of its velocity is equal to that of its acceleration. Then its time period in second is:

    A) \[\frac{1}{2\pi \sqrt{3}}\]

    B) \[2\pi \sqrt{3}\]

    C) \[\frac{2\pi }{\sqrt{3}}\]

    D) \[\frac{\sqrt{3}}{2\pi }\]

    E) \[\frac{\sqrt{3}}{\pi }\]

    View Answer play_arrow
  • question_answer51) A closed organ pipe and an open organ pipe are tuned to the same fundamental frequency. The ratio of their lengths is:

    A) \[1:1\]

    B) \[2:1\]

    C) \[1:4\]

    D) \[1:2\]

    E) \[4:1\]

    View Answer play_arrow
  • question_answer52) An observer standing near the sea shore/min. If the wavelength of the water wave is 10 m then the velocity of water wave is:

    A) \[540\,m{{s}^{-1}}\]

    B) \[5.4m{{s}^{-1}}\]

    C) \[0.184\text{ }m{{s}^{-1}}\]

    D) \[9\text{ }m{{s}^{-1}}\]

    E) \[48.6\text{ }m{{s}^{-1}}\]

    View Answer play_arrow
  • question_answer53) A set of 24 tuning forks are so arranged that each gives 6 beats/s with the previous one. If the frequency of the last tuning fork is double that of the first, frequency of the second tuning fork is:

    A) 138 Hz

    B) 132 Hz

    C) 144 Hz

    D) 276 Hz

    E) 270 Hz

    View Answer play_arrow
  • question_answer54) The electrostatic field due to a charged conductor just outside the conductor is:

    A) zero and parallel to the surface at every point inside the conductor

    B) zero and is normal to the surface at every point inside the conductor

    C) parallel to the surface at every point and zero inside the conductor

    D) normal to the surface at every point and zero inside the conductor

    E) normal to the surface at every point and non-zero inside the conductor

    View Answer play_arrow
  • question_answer55) A point charge + q is placed at the midpoint of a cube of side a. The electric flux emerging from the cube is:

    A) zero

    B) \[\frac{3q{{a}^{2}}}{{{\varepsilon }_{0}}}\]

    C) \[\frac{q}{{{\varepsilon }_{0}}}\]

    D) \[\frac{{{\varepsilon }_{0}}}{4q{{a}^{2}}}\]

    E) \[\frac{{{\varepsilon }_{0}}}{q}\]

    View Answer play_arrow
  • question_answer56) Figure below shows four plates each of area A and separated from one another by a distance d. What is the capacitance between P and Q?

    A) \[\frac{{{\varepsilon }_{0}}A}{d}\]

    B) \[\frac{2{{\varepsilon }_{0}}A}{d}\]

    C) \[\frac{3{{\varepsilon }_{0}}A}{d}\]

    D) \[\frac{4{{\varepsilon }_{0}}A}{d}\]

    E) Zero

    View Answer play_arrow
  • question_answer57) A soap bubble is charged to a potential of 16 V. Its radius is, then doubled. The potential of the bubble now will be:

    A) 16V

    B) 8V

    C) 4V

    D) 2V

    E) zero

    View Answer play_arrow
  • question_answer58) A parallel plate capacitor of capacitance\[10\mu F\]is charged to\[1\mu C\]. The charging battery is removed and then the separation between the plates is doubled. Work done during the process is:

    A) \[5\text{ }m\text{ }J\]

    B) \[0.05\text{ }m\text{ }J\]

    C) \[\text{1 }m\text{ }J\]

    D) \[10\text{ }m\text{ }J\]

    E) \[\text{50 }m\text{ }J\]

    View Answer play_arrow
  • question_answer59) A 10 0 electric heater operates on a 110 V line. The rate at which heat is developed in watts is:

    A) 1310 W

    B) 670 W

    C) 810 W

    D) 1210 W

    E) 1100 W

    View Answer play_arrow
  • question_answer60) For a certain thermocouple, if the temperature of the cold junction is\[0{}^\circ C,\]the neutral temperature and inversion temperatures are\[285{}^\circ C\]and\[570{}^\circ C\] respectively. If the cold junction is brought to \[10{}^\circ C,\]then the new neutral and inversion temperatures are respectively:

    A) \[285{}^\circ C\] and \[560{}^\circ C\]

    B) \[285{}^\circ C\] and\[570{}^\circ C\]

    C) \[295{}^\circ C\] and\[560{}^\circ C\]

    D) \[275{}^\circ C\] and\[560{}^\circ C\]

    E) \[275{}^\circ C\] and\[570{}^\circ C\]

    View Answer play_arrow
  • question_answer61) In which of the following substances does resistance decrease with increase in temperature?

    A) Copper

    B) Carbon

    C) Constantan

    D) Silver

    E) Sodium

    View Answer play_arrow
  • question_answer62) Resistors P and Q are connected in the gaps of the meter bridge. The balancing point is obtained\[\frac{1}{3}\]m from the zero end. If a\[6\,\Omega \]resistance is connected in series with P the balance point shifts to\[\frac{2}{3}\]m from the same end. P and Q are:

    A) 4, 2

    B) 2, 4

    C) both (a) and (b)

    D) neither (a) nor (b)

    E) unpredictable

    View Answer play_arrow
  • question_answer63) The currents ii and 13 through the resistors\[{{R}_{1}}(=10\,\Omega )\]and\[{{R}_{2}}(=30\,\Omega )\]in the circuit -diagram with\[{{E}_{1}}=3V\,,{{E}_{2}}=3V\]and\[{{E}_{3}}=2V\]are respectively:

    A) 0.2 A, 0.1 A

    B) 0.4 A, 0.2 A

    C) 0.1 A, 0.2 A

    D) 0.2 A, 0.4 A

    E) 0.4 A, 0.1 A

    View Answer play_arrow
  • question_answer64) An\[\alpha -\]particle with a specific charge of \[2.5\times {{10}^{7}}C\,k{{g}^{-1}}\] moves with a speed of\[2\times {{10}^{5}}\] \[m{{s}^{-1}}\]in a perpendicular magnetic field of 0.05 T. Then the radius of the circular path described by it is:

    A) 8 cm

    B) 4 cm

    C) 16cm

    D) 2cm

    E) 32 cm

    View Answer play_arrow
  • question_answer65) A cyclotron can be used to accelerate:

    A) \[\alpha -\]particles

    B) \[\beta -\]particles

    C) neutrons

    D) neutrino

    E) positron

    View Answer play_arrow
  • question_answer66) The magnitude of the earths magnetic field at a place is\[{{\beta }_{0}}\]and the angle of dip is\[\delta \]. A horizontal conductor of length\[l\]lying magnetic north-south moves eastwards with a velocity v. The emf induced across the conductor is:

    A) zero

    B) \[{{B}_{0}}lv\,\sin \delta \]

    C) \[{{B}_{0}}\,lv\]

    D) \[{{B}_{0}}lv\,\cos \delta \]

    E) \[{{B}_{0}}\sin \delta \]

    View Answer play_arrow
  • question_answer67) A miiliammeter of range 0 - 30 mA has internal resistance of\[20\,\Omega \]. The resistance to be connected in series to convert it into a voltmeter of maximum reading 3V is:

    A) \[49\,\Omega \]

    B) \[80\,\Omega \]

    C) \[40\,\Omega \]

    D) \[30\,\Omega \]

    E) \[50\,\Omega \]

    View Answer play_arrow
  • question_answer68) A straight conductor of length I carrying a current 7, is bent in the form of a semicircle. The magnetic field (in tesla) at the centre of the semicircle is:

    A) \[\frac{{{\pi }^{2}}I}{l}\times {{10}^{-7}}\]

    B) \[\frac{\pi I}{l}\times {{10}^{-7}}\]

    C) \[\frac{\pi I}{{{l}^{2}}}\times {{10}^{-7}}\]

    D) \[\frac{\pi {{I}^{2}}}{l}\times {{10}^{-7}}\]

    E) \[\frac{\pi {{I}^{2}}}{{{l}^{2}}}\times {{10}^{-7}}\]

    View Answer play_arrow
  • question_answer69) A coil having an inductance of 0.5 H carries a current which is uniformly varying from 0 to 10 A in 2 s. The emf (in volts) generated in the coil is:

    A) 10

    B) 5

    C) 2.5

    D) 1.25

    E) 0.25

    View Answer play_arrow
  • question_answer70) If an alternating voltage is represented as E = 141 sin (628 t), then the rms value of the voltage and the frequency are respectively:

    A) 141 V, 628 Hz

    B) 100 V, 50 Hz

    C) 100 V, 100 Hz

    D) 141 V, 100 Hz

    E) 100 V, 314 Hz

    View Answer play_arrow
  • question_answer71) A step-down transformer is used on a 1000 V line to deliver 20 A at 120 V at the secondary coil. If the efficiency of the transformer is 80%, the current drawn from the line is:

    A) 3 A

    B) 30 A

    C) 0.3 A

    D) 2.4 A

    E) 24 A

    View Answer play_arrow
  • question_answer72) For the series LCR circuit shown in the figure, what is the resonance frequency and the amplitude of the current at the resonating frequency?

    A) \[2500\,rad-{{s}^{-1}}and\,5\sqrt{2}A\]

    B) \[2500\text{ }rad-{{s}^{-1}}and\text{ }5\text{ }A\]

    C) \[2500\text{ }rad-{{s}^{-1}}and\,\frac{5}{\sqrt{2}}\text{ }A\]

    D) \[250\,rad-{{s}^{-1}}and\,5\sqrt{2}A\]

    E) \[25\,rad-{{s}^{-1}}and\,5\sqrt{2}A\]

    View Answer play_arrow
  • question_answer73) What would be the heat released when an aqueous solution containing 0.5 mole of\[HN{{O}_{3}}\]is mixed with 0.3 mole of\[O{{H}^{-}}\](enthalpy of neutralization is\[-57.1\text{ }kJ\])?

    A) 28.5 kJ

    B) 17.1 kJ

    C) 45.7 kJ

    D) 1.7 kJ

    E) 2.85 kJ

    View Answer play_arrow
  • question_answer74) \[A(g)+3B(g)4C(g)\] Initially concentration of A is equal to that of B. The equilibrium concentrations of A and C are equal.\[{{K}_{c}}\]is:

    A) 0.08

    B) 0.8

    C) 8

    D) 80

    E) \[\frac{1}{8}\]

    View Answer play_arrow
  • question_answer75) Two moles of\[PC{{l}_{5}}\]is heated in a closed vessel of 2L capacity. When the equilibrium is attained 40% of it has been found to be dissociated. What is the\[{{K}_{c}}\]in\[mol/d{{m}^{3}}\]?

    A) 0.532

    B) 0.266

    C) 0.133

    D) 0.174

    E) 0.25

    View Answer play_arrow
  • question_answer76) Dry air is passed through a solution containing 10 g of a solute in 90 g of water and then through pure water. The loss in weight of solution is 2.5 g and that of pure solvent is 0.05 g. Calculate the molecular weight of the solute.

    A) 50

    B) 180

    C) 102

    D) 25

    E) 51

    View Answer play_arrow
  • question_answer77) The vant Hoff factor of\[BaC{{l}_{2}}\]at 0.01 M concentration is 1.98. The percentage of dissociation of\[BaC{{l}_{2}}\]at this concentration is:

    A) 49

    B) 69

    C) 89

    D) 98

    E) 100

    View Answer play_arrow
  • question_answer78) The standard electrode potentials of\[A{{g}^{+}}/Ag\]is\[+0.80\text{ }V\]and\[C{{u}^{+}}/Cu\]is\[+0.34\text{ }V\]. These electrodes are connected through a salt bridge and if:

    A) copper electrode acts as a cathode then\[E{}^\circ \]cell is\[+0.46\text{ }V\]

    B) silver electrode acts as anode then\[E{}^\circ \]cell is\[-0.34\text{ }V\]

    C) copper electrode acts as anode then\[E{}^\circ \]cell is\[+0.46V\]

    D) silver electrode acts as a cathode then\[E{}^\circ \]cell is\[-0.34\text{ }V\]

    E) silver electrode acts as anode and\[E{}^\circ \]cell is \[+1.14V\]

    View Answer play_arrow
  • question_answer79) In alkaline medium\[Cl{{O}_{2}}\]oxidizes\[{{H}_{2}}{{O}_{2}}\]to\[{{O}_{2}}\] and itself gets reduced to\[C{{l}^{-}}\]. How many moles ofH^02 are oxidized by 1 mole of\[Cl{{O}_{2}}\]?

    A) 1.0

    B) 1.5

    C) 2.5

    D) 3.5

    E) 5.0

    View Answer play_arrow
  • question_answer80) For the reaction \[2{{N}_{2}}{{O}_{5}}(g)\xrightarrow[{}]{{}}4N{{O}_{2}}(g)+{{O}_{2}}(g)\] if the concentration of\[N{{O}_{2}}\]increases by \[5.2\times {{10}^{-3}}\]M in 100 s then the rate of the reaction is:

    A) \[1.3\times {{10}^{-5}}M{{s}^{-1}}\]

    B) \[0.5\times {{10}^{-4}}M{{s}^{-1}}\]

    C) \[7.6\times {{10}^{-4}}M{{s}^{-1}}\]

    D) \[2\times {{10}^{-3}}M{{s}^{-1}}\]

    E) \[2.5\times {{10}^{-5}}M{{s}^{-1}}\]

    View Answer play_arrow
  • question_answer81) A first order reaction is 10% complete in 20 min. The time taken for 19% completion is:

    A) 30 min

    B) 40 min

    C) 50 min

    D) 38 min

    E) 45 min

    View Answer play_arrow
  • question_answer82) Lyophilic sols are more stable than lyophobic sols because the particles:

    A) are positively charged

    B) are negatively charged

    C) are solvated

    D) repel each other

    E) are heavy

    View Answer play_arrow
  • question_answer83) Potassium stearate is obtained by the saponification of an oil or fat. It has the formula\[C{{H}_{3}}-{{(C{{H}_{2}})}_{16}}-CO{{O}^{-}}{{K}^{+}}\]. The molecule has a lyophobic end\[[C{{H}_{3}}]\]and a lyophilic end\[CO{{O}^{-}}{{K}^{+}}\]Potassium stearate is an example for:

    A) lyophobic colloid

    B) lyophilic colloid

    C) multimolecular colloid

    D) macromolecular colloid

    E) associated colloid or micelle

    View Answer play_arrow
  • question_answer84) (A) \[{{K}_{4}}[Fe{{(CN)}_{6}}]\] (B) \[{{K}_{3}}[Cr{{(CN)}_{6}}]\] (C) \[{{K}_{3}}[Co{{(CN)}_{6}}]\] (D) \[{{K}_{2}}[Ni{{(CN)}_{4}}]\] Select the complexes which are diamagnetic:

    A) (A), (B) and (C)

    B) (B), (C) and (D)

    C) (A), (C) and (D)

    D) (A), (B) and (D)

    E) (B) and (D)

    View Answer play_arrow
  • question_answer85) Which is not true of the co-ordination compound\[[Co{{(en)}_{2}}C{{l}_{2}}]Cl\]?

    A) Exhibits geometrical isomerism

    B) Exhibits optical isomerism

    C) Exhibits ionization isomerism

    D) Is an octahedral complex

    E) Is a cationic complex

    View Answer play_arrow
  • question_answer86) The IUPAC name of the compound is: \[HOOC-C{{H}_{2}}-\underset{\begin{smallmatrix} | \\ COOH \end{smallmatrix}}{\mathop{CH}}\,-C{{H}_{2}}-C{{H}_{2}}-COOH\]

    A) 2(carboxymethyl)-pentane-1, 5-dioic acid

    B) 3-carboxyhexane-1, 6-dioic acid

    C) butane-1, 2, 4-tricarboxylic acid

    D) 4-carboxyhexane-1, 6-dioic acid

    E) 1, 2-dicarboxy pentanoic acid

    View Answer play_arrow
  • question_answer87) How much of sulphur is present in an organic compound, if 0.53 g of the compound gave 1.158 g of\[BaS{{O}_{4}}\]on analysis?

    A) 10%

    B) 15%

    C) 20%

    D) 25%

    E) 30%

    View Answer play_arrow
  • question_answer88) An alkene having the molecular formula \[{{C}_{9}}{{H}_{18}}\]on ozonolysis gives 2, 2-dimethyl propanal and 2-butanone. The alkene is:

    A) 2, 2, 2-trimethyl-3-hexene

    B) 2, 2, 6-trimethyl-3-hexane

    C) 2, 3, 4-trimethyl-2-hexene

    D) 2, 2, 4-trimethyl-3-hexene

    E) 2, 2,-dimethyl 1-3 heptene

    View Answer play_arrow
  • question_answer89) Observe the following reactions and predict the nature of A and B:

    A) A and B both are

    B) A and B both are

    C)

    D)

    E)

    View Answer play_arrow
  • question_answer90) Nitration of aniline in strongly acidic medium, result in the formation of m-nitroaniline also. This is because:

    A) amino group is meta orienting during electrophilic substitution reaction

    B) nitro group goes always to the meta position irrespective of the substituents

    C) nitration of aniline is a nucleophilic substitution reaction in strongly acidic medium

    D) in strongly acidic conditions aniline is present as anilinium ion

    E) strong acids generate nitrite anion which can attack only the meta position

    View Answer play_arrow
  • question_answer91) How many\[\sigma \]and\[\pi \]bonds are present in toluene?

    A) \[3\pi +\text{ }8\sigma \]

    B) \[3\pi +10\sigma \]

    C) \[3\pi +15\sigma \]

    D) \[6\pi +3\sigma \]

    E) \[6\pi +6\sigma \]

    View Answer play_arrow
  • question_answer92) Which of the following Fischers projection formula is identical to D-glyceraldehyde?

    A)

    B)

    C)

    D)

    E)

    View Answer play_arrow
  • question_answer93) The name of the compound fig. is:

    A) (2Z, 4Z)-2, 4-hexadiene

    B) (2Z, 4E)-2, 4-hexadiene

    C) (2E, 4Z)-2, 4-hexadiene

    D) (4E, 4Z)-2, 4-hexadiene

    E) (2E, 4E)-2, 4-hexadiene

    View Answer play_arrow
  • question_answer94) When 32.25 g of ethyl chloride is subjected to dehydrohalogenation reaction the yield of the alkene formed is 50%. The mass of the product formed is: (atomic mass of chlorine is 35.5)

    A) 14 g

    B) 28 g

    C) 64.5 g

    D) 56 g

    E) 7g

    View Answer play_arrow
  • question_answer95) Chlorination of toluene in presence of light and heat followed by treatment with aqueous \[NaOH\]gives:

    A) o-cresol

    B) p-cresol

    C) mixture of o-cresol and p-cresol

    D) benzoic acid

    E) 1, 3, 5-trihydroxy toluene

    View Answer play_arrow
  • question_answer96) \[C{{H}_{3}}-CHO-HCN\xrightarrow{{}}A\]. Compound A on hydrolysis gives:

    A) \[C{{H}_{3}}C{{H}_{2}}COOH\]

    B) \[C{{H}_{3}}\text{ }C{{H}_{2}}C{{H}_{2}}N{{H}_{2}}\]

    C) \[C{{H}_{3}}COCOOH\]

    D) \[C{{H}_{3}}.COCH=NOH\]

    E) \[C{{H}_{3}}\underset{\begin{smallmatrix} | \\ OH \end{smallmatrix}}{\mathop{CH}}\,COOH\]

    View Answer play_arrow
  • question_answer97) Which of the following does not undergo Cannizaros reaction?

    A) Benzaldehyde

    B) 2-methylpropanal

    C) p-methoxybenzaldehyde

    D) 2, 2-dimethylpropanal

    E) Formaldehyde

    View Answer play_arrow
  • question_answer98) Identify the product in the following sequence 3, 4, 5-tribromoanilin\[\xrightarrow[(2)\,{{H}_{3}}P{{O}_{2}}]{(1)\,diazotization}\]?

    A) 3, 4, 5-tribromobenzene

    B) 1, 2, 3-tribromobenzene

    C) 2, 4, 6-tribromobenzene

    D) 3, 4, 5-tribromonitrobenzene

    E) 3, 4, 5-tribromophenol

    View Answer play_arrow
  • question_answer99) Among the amines\[(A){{C}_{6}}{{H}_{5}}N{{H}_{2}}\]\[(B)C{{H}_{3}}N{{H}_{2}}\]\[(C){{(C{{H}_{3}})}_{2}}NH\]\[(D){{(C{{H}_{3}})}_{3}}N,\]the order of basicity is:

    A) \[A<B<D<C\]

    B) \[D<C<B<A\]

    C) \[A>B>C>D\]

    D) \[B<C<D<A\]

    E) \[D<C<B<A\]

    View Answer play_arrow
  • question_answer100) The number average molecular mass and mass average molecular mass of a polymer are respectively 30,000 and 40, 000. The poly dispersity index of the polymer is:

    A) < 1

    B) > 1

    C) 1

    D) 0

    E) \[-1\]

    View Answer play_arrow
  • question_answer101) In biological systems, the RNA molecules direct the synthesis of specific proteins which are characteristic of each kind of organism. This process is known is:

    A) transcription

    B) mutation

    C) replication

    D) translation

    E) flocculation

    View Answer play_arrow
  • question_answer102) Pick up the correct statement:

    A) CO which is major pollutant resulting from the combustion of fuels in automobiles plays a major role in photochemical smog

    B) Classical smog has an oxidizing character while the photochemical smog is reducing in character

    C) Photochemical smog occurs in day time whereas the classical smog occurs in early morning hours

    D) During formation of smog the level of ozone in the atmosphere goes down

    E) Classical smog is good for health but not photochemical smog

    View Answer play_arrow
  • question_answer103) In Antarctica ozone depletion is due to the formation of following compound :

    A) acrolein

    B) peroxyacetyl nitrate

    C) \[S{{O}_{2}}\]and\[S{{O}_{3}}\]

    D) chlorine nitrate

    E) formaldehyde

    View Answer play_arrow
  • question_answer104) \[100\text{ }g\text{ }CaC{{O}_{3}}\]is treated with 1 L of \[1N\text{ }HCl\]. What would be the weight of\[C{{O}_{2}}\]liberated after the completion of the reaction?

    A) 55 g

    B) 11 g

    C) 22 g

    D) 33 g

    E) 44 g

    View Answer play_arrow
  • question_answer105) The relationship between the energy\[{{E}_{1}}\]of the radiation with a wavelength \[8000\overset{\text{o}}{\mathop{\text{A}}}\,\] and the energy\[{{E}_{2}}\]of the radiation with a wavelength \[16000\overset{\text{o}}{\mathop{\text{A}}}\,\] is:

    A) \[{{E}_{1}}=6{{E}_{2}}\]                

    B) \[{{E}_{1}}=2{{E}_{2}}\]

    C) \[{{E}_{1}}=4{{E}_{2}}\]       

    D) \[{{E}_{1}}=1/2{{E}_{2}}\]

    E) \[{{E}_{1}}={{E}_{2}}\]

    View Answer play_arrow
  • question_answer106) If the molecule of\[HCl\]were totally polar, the expected value of dipole moment is 6.12 D (debye), but the experimental value of dipole moment was 1.03 D. Calculate the percentage ionic character:

    A) 17

    B) 83

    C) 50

    D) zero

    E) 90

    View Answer play_arrow
  • question_answer107) Which one of the following molecules has the smallest bond angle?

    A) \[N{{H}_{3}}\]

    B) \[P{{H}_{3}}\]

    C) \[{{H}_{2}}O\]

    D) \[{{H}_{2}}Se\]

    E) \[{{H}_{2}}S\]

    View Answer play_arrow
  • question_answer108) If the absolute temperature of a gas is doubled and the pressure is reduced to one half, the volume of the gas will:

    A) remain unchanged

    B) be doubled

    C) increase four fold

    D) be halved

    E) be reduced to one-fourth

    View Answer play_arrow
  • question_answer109) To what temperature must a neon gas sample be heated to double its pressure, if the initial volume of gas at\[75{}^\circ C\]is decreased by 15.0%?

    A) \[319{}^\circ C\]

    B) \[592{}^\circ C\]

    C) \[128{}^\circ C\]

    D) \[60{}^\circ C\]

    E) \[90{}^\circ C\]

    View Answer play_arrow
  • question_answer110) When electric current is passed through an ionic hydride in molten state:

    A) hydrogen is liberated at anode

    B) hydrogen is liberated at cathode

    C) no change takes place

    D) hydride for migrates towards cathode

    E) hydride ion remains in solution

    View Answer play_arrow
  • question_answer111) The order of first ionization energies of the elements\[Li,Be,B,Na\]is:

    A) \[Li>Be>B>Na\]

    B) \[Be>B>Li>Na\]

    C) \[Na>Li>B>Be\]

    D) \[Be>Li>B>Na\]

    E) \[B>Be>Li>Na\]

    View Answer play_arrow
  • question_answer112) The froth-floatation process is based upon:

    A) the difference in the specific gravity of ore and gangue particles

    B) the magnetic properties of gangue and ore

    C) preferential wetting of gangue particles by oil

    D) preferential wetting of ore particles by oil

    E) the solubility of ore particles in suitable reagent

    View Answer play_arrow
  • question_answer113) Which one of the following statements is true for all the alkali metals?

    A) Their nitrates decompose on heating to give\[N{{O}_{2}}\]and\[{{O}_{2}}\]

    B) Their carbonates decompose on heating to give\[C{{O}_{2}}\]and the metal oxide

    C) They react with oxygen to give mainly the oxide\[{{M}_{2}}O\]

    D) They react with halogens to give the halides MX

    E) They react with nitrogen to give nitrides

    View Answer play_arrow
  • question_answer114) The order of acidic strength of boron trihalides is:

    A) \[B{{F}_{3}}<BC{{l}_{3}}<BB{{r}_{3}}<B{{I}_{3}}\]

    B) \[B{{l}_{3}}<BB{{r}_{3}}<BC{{l}_{3}}<B{{F}_{3}}\]

    C) \[BC{{l}_{3}}<BB{{r}_{3}}<B{{l}_{3}}<B{{F}_{3}}\]

    D) \[BB{{r}_{3}}<BC{{l}_{3}}<B{{F}_{3}}<B{{I}_{3}}\]

    E) \[B{{F}_{3}}<B{{I}_{3}}<BC{{I}_{3}}<BB{{r}_{3}}\]

    View Answer play_arrow
  • question_answer115) The carbide which reacts with water to form ethyne is:

    A) \[Ca{{C}_{2}}\]

    B) \[SiC\]

    C) \[M{{g}_{2}}{{C}_{3}}\]

    D) \[A{{l}_{4}}{{C}_{3}}\]

    E) \[B{{e}_{2}}C\]

    View Answer play_arrow
  • question_answer116) Effective magnetic moment of\[S{{c}^{\text{3}+}}\]ion is:

    A) 1.73

    B) 0

    C) 5.92

    D) 2.83

    E) 3.87

    View Answer play_arrow
  • question_answer117) Potassium permanganate acts as an oxidant in alkaline and acidic media. The final products formed from \[KMn{{O}_{4}}\] in the two conditions are respectively:

    A) \[Mn{{O}^{2-}}\]and \[M{{n}^{3+}}\]

    B) \[M{{n}^{3+}}\]and \[M{{n}^{2+}}\]

    C) \[M{{n}^{2+}}\]and \[M{{n}^{3+}}\]

    D) \[Mn{{O}_{2}}\]and \[M{{n}^{2+}}\]

    E) \[M{{n}^{2+}},Mn{{O}_{2}}\]

    View Answer play_arrow
  • question_answer118) Calculate the mass loss in the following. \[_{1}^{2}H+_{1}^{3}H\xrightarrow[{}]{{}}_{2}^{4}He+_{0}^{1}n\] [Given the masses: \[^{2}H=2.014{{;}^{3}}H=3.016;\] \[He=4.004;\text{ }n=1.008amu\]]

    A) 0.018 amu

    B) 0.18 amu

    C) 0.0018 amu

    D) 1.8 amu

    E) 18 amu

    View Answer play_arrow
  • question_answer119) Match list I and list II and select the correct answer using the code given below the lists:

    List-I Nuclear Reactor components List-II Substance used
    1. Moderator A. Uranium
    2. Control rods B. Graphite
    3. Fuel rods C. Boron
    4. Coolant D. Lead
    E. Sodium
    Codes:

    A) 1-B, 2-A, 3-C, 4-E

    B) 1-B, 2-C, 3-A, 4-E

    C) 1-E, 2-B, 3-A, 4-C

    D) 1-C, 2-D, 3-A, 4-B

    E) 1-D, 2-C, 3-B, 4-A

    View Answer play_arrow
  • question_answer120) \[\Delta H\]and\[\Delta S\]for a reaction are\[+30.558\text{ }kJ\] \[mo{{l}^{-1}}\]and\[0.066\,kJ\,{{K}^{-1}}mo{{l}^{-1}}\]at 1 aim pressure. The temperature at which free energy change is equal to zero and the nature of the reaction below this temperature are:

    A) 483 K, spontaneous

    B) 443 K, non-spontaneous

    C) 443 K, spontaneous

    D) 463 K, non-spontaneous

    E) 463 K, spontaneous

    View Answer play_arrow
  • question_answer121) \[\sum\limits_{r=0}^{m}{^{n+r}{{C}_{n}}}\]is equal to:

    A) \[^{n+m+1}{{C}_{n+1}}\]

    B) \[^{n+m+2}{{C}_{n}}\]

    C) \[^{n+m+3}{{C}_{n-1}}\]

    D) 0

    E) none of these

    View Answer play_arrow
  • question_answer122) If\[P(n,r)=1680\]and\[C(n,r)=70,\]then \[69n+r!\]is equal to:

    A) 128

    B) 576

    C) 256

    D) 625

    E) 1152

    View Answer play_arrow
  • question_answer123) \[\left( 1+\frac{{{C}_{1}}}{{{C}_{0}}} \right)\left( 1+\frac{{{C}_{2}}}{{{C}_{1}}} \right)\left( 1+\frac{{{C}_{3}}}{{{C}_{2}}} \right).....\left( 1+\frac{{{C}_{n}}}{{{C}_{n-1}}} \right)\]is equal to:

    A) \[\frac{n+1}{n!}\]

    B) \[\frac{{{(n+1)}^{n}}}{(n-1)!}\]

    C) \[\frac{{{(n-1)}^{n}}}{n!}\]

    D) \[\frac{{{(n+1)}^{n}}}{n!}\]

    E) \[\frac{n-1}{n!}\]

    View Answer play_arrow
  • question_answer124) In the expansion of\[{{(1+3x+2{{x}^{2}})}^{6}}\]the coefficient of \[{{x}^{11}}\] is:

    A) 144

    B) 288

    C) 216

    D) 576

    E) \[({{2}^{11}})(3)\]

    View Answer play_arrow
  • question_answer125) \[{{10}^{n}}+3({{4}^{n+2}})+5\]is divisible by\[(n\in N)\]:

    A) 7

    B) 5

    C) 9

    D) 17

    E) 13

    View Answer play_arrow
  • question_answer126) \[f(x)=\] \[\left| \begin{matrix} 1 & x & x+1 \\ 2x & x(x-1) & (x+1)x \\ 3x(x-1) & x(x-1)(x-2) & (x+1)x(x-1) \\ \end{matrix} \right|\] then\[f(100)\]is equal to:

    A) 0

    B) 1

    C) 100

    D) \[-100\]

    E) \[-1\]

    View Answer play_arrow
  • question_answer127) If\[p{{\lambda }^{4}}+q{{\lambda }^{3}}+r{{\lambda }^{2}}+s\lambda +t=\] \[\left| \begin{matrix} {{\lambda }^{2}}+3\lambda & \lambda -1 & \lambda +3 \\ \lambda +1 & 2-\lambda & \lambda -3 \\ \lambda -3 & \lambda +4 & 3\lambda \\ \end{matrix} \right|\] then\[t\]is equal to:

    A) 33

    B) 22

    C) 21

    D) \[-33\]

    E) 54

    View Answer play_arrow
  • question_answer128) Let A be a square matrix of order 3.If \[|A|=-2,\]then the value of determinant of \[|A|adj\,A\]is:

    A) 8

    B) \[-8\]

    C) \[-1\]

    D) 32

    E) \[-32\]

    View Answer play_arrow
  • question_answer129) If\[f(x)=\left| \begin{matrix} x-3 & 2{{x}^{2}}-18 & 3{{x}^{3}}-81 \\ x-5 & 2{{x}^{2}}-50 & 4{{x}^{3}}-500 \\ 1 & 2 & 3 \\ \end{matrix} \right|,\]then\[f(1).f(3)+f(3).f(5)+f(5).f(1)\]is equal to:

    A) \[f(1)\]

    B) \[f(3)\]

    C) \[f(1)+f(3)\]

    D) \[f(1)+f(5)\]

    E) \[f(1)+f(3)+f(5)\]

    View Answer play_arrow
  • question_answer130) If\[x=(\beta -\gamma )(\alpha -\delta ),y=(\gamma -\alpha )(\beta -\delta ),\] \[z=(\alpha -\beta )(\gamma -\delta ),\]then the value of\[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz\]is:

    A) 0

    B) \[{{\alpha }^{6}}+{{\beta }^{6}}+{{\gamma }^{6}}+{{\delta }^{6}}\]

    C) \[{{\alpha }^{6}}{{\beta }^{6}}{{\gamma }^{6}}{{\delta }^{6}}\]

    D) 1

    E) none of these

    View Answer play_arrow
  • question_answer131) If \[A=\left[ \begin{matrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \\ \end{matrix} \right]\]and\[B=(adj\text{ }A),\]and \[C=5A,\]then \[\frac{|adj\,B|}{|C|}\]is equal to:

    A) 5

    B) 25

    C) \[-1\]

    D) 1

    E) 125

    View Answer play_arrow
  • question_answer132) The output s as a Boolean expression in the inputs\[{{x}_{1}},{{x}_{2}}\]and\[{{x}_{3}}\]for the logic circuit in the following figure is:

    A) \[{{x}_{1}},x_{2}^{}+x_{2}^{}+{{x}_{3}}\]

    B) \[{{x}_{1}}+x_{2}^{}{{x}_{3}}+{{x}_{3}}\]

    C) \[({{x}_{1}}{{x}_{2}})+{{x}_{1}}x_{2}^{}{{x}_{3}}\]

    D) \[{{x}_{1}}+x{{}_{2}}+{{x}_{3}}\]

    E) \[{{x}_{1}}x{{}_{2}}+x{{}_{2}}{{x}_{3}}\]

    View Answer play_arrow
  • question_answer133) The. feasible region for the following constraints\[{{L}_{1}}\ge 0,{{L}_{2}}\ge 0,{{L}_{3}}=0,x\ge 0,y\ge 0\]in the diagram shown is:

    A) area DHF

    B) area AHC

    C) line segment EG

    D) line segment GI

    E) line segment 1C

    View Answer play_arrow
  • question_answer134) Let\[{{D}_{70}}=\{1,2,5,7,10,14,35,70\}\]. Define\[+,\]\[.,\] and\[,,\]by\[a+b=1\,cm(a,b),a.b-\gcd (a,b)\]and \[a=\frac{70}{a}\]for all\[a,b\in {{D}_{70}}\].The value of\[(2+7)\]\[(14.10)\]is:

    A) 7

    B) 14

    C) 35

    D) 5

    E) 1

    View Answer play_arrow
  • question_answer135) Let a be any element in a Boolean Algebra B. If\[a+x=1\]and\[ax=0,\]then:

    A) \[x=1\]

    B) \[x=0\]

    C) \[x=a\]

    D) \[x=a\]

    E) \[x=a+a\]

    View Answer play_arrow
  • question_answer136) If the sides of the triangle are \[p,q,\sqrt{{{p}^{2}}+{{q}^{2}}+pq},\]then the greatest angle is:

    A) \[\frac{\pi }{2}\]

    B) \[\frac{5\pi }{4}\]

    C) \[\frac{2\pi }{3}\]

    D) \[\frac{7\pi }{4}\]

    E) \[\frac{5\pi }{3}\]

    View Answer play_arrow
  • question_answer137) then 5 is equal to:

    A) \[x.(y+z)\]

    B) \[x.(y+z)\]

    C) \[x.(y+z)\]

    D) \[(x+y).z\]

    E) \[x.y+z\]

    View Answer play_arrow
  • question_answer138) If\[\sin \left( {{\sin }^{-1}}\frac{1}{5}+{{\cos }^{-1}}x \right)=1,\]then the value of\[x\]is:

    A) \[-1\]

    B) \[\frac{2}{5}\]

    C) \[\frac{1}{3}\]

    D) \[1\]

    E) \[\frac{1}{5}\]

    View Answer play_arrow
  • question_answer139) \[\sin \left[ 3{{\sin }^{-1}}\left( \frac{1}{5} \right) \right]\]is equal to:

    A) \[\frac{71}{125}\]

    B) \[\frac{74}{125}\]

    C) \[\frac{3}{5}\]

    D) \[\frac{1}{2}\]

    E) \[\frac{-3}{5}\]

    View Answer play_arrow
  • question_answer140) \[\frac{\cos 9{}^\circ +\sin 9{}^\circ }{\cos 9{}^\circ -\sin 9{}^\circ }\] is equal to:

    A) \[tan\text{ }26{}^\circ \]

    B) \[tan\text{ 81}{}^\circ \]

    C) \[tan\text{ 51}{}^\circ \]

    D) \[tan\text{ 54}{}^\circ \]

    E) \[tan\text{ 46}{}^\circ \]

    View Answer play_arrow
  • question_answer141) \[{{\cos }^{-1}}\left( \frac{3+5\cos x}{5+3\cos x} \right)\]is equal to:

    A) \[{{\tan }^{-1}}\left( \frac{1}{2}\tan \frac{x}{2} \right)\]

    B) \[2{{\tan }^{-1}}\left( 2\tan \frac{x}{2} \right)\]

    C) \[\frac{1}{2}{{\tan }^{-1}}\left( 2\tan \frac{x}{2} \right)\]

    D) \[2{{\tan }^{-1}}\left( \frac{1}{2}\tan \frac{x}{2} \right)\]

    E) \[{{\tan }^{-1}}\left( \tan \frac{x}{2} \right)\]

    View Answer play_arrow
  • question_answer142) If\[\Delta ={{a}^{2}}-{{(b-c)}^{2}}\]where\[\Delta \]is the area of triangle ABC, then\[tan\Delta \]is equal to:

    A) \[\frac{15}{16}\]

    B) \[\frac{8}{17}\]

    C) \[\frac{8}{15}\]

    D) \[\frac{1}{2}\]

    E) \[\frac{11}{15}\]

    View Answer play_arrow
  • question_answer143) If\[0<\phi <\frac{\pi }{2},x=\sum\limits_{n=0}^{\infty }{{{\cos }^{2n}}\phi },y=\sum\limits_{n=0}^{\infty }{{{\sin }^{2n}}\phi }\]and \[z=\sum\limits_{n=0}^{\infty }{{{\cos }^{2n}}\phi }{{\sin }^{2}}n\phi ,\]then:

    A) \[xyz=xz+y\]

    B) \[xyz=xy+z\]

    C) \[xyz=x+y+z\]

    D) \[xyz=yz+x\]

    E) \[xyz=x+yz\]

    View Answer play_arrow
  • question_answer144) If in a triangle \[ABC,a=5,b=4,A=\frac{\pi }{2}+B,\] then C:

    A) is\[{{\tan }^{-1}}\left( \frac{1}{9} \right)\]

    B) is \[{{\tan }^{-1}}\left( \frac{9}{40} \right)\]

    C) cannot be evaluated

    D) is\[2{{\tan }^{-1}}\left( \frac{1}{9} \right)\]

    E) is\[2{{\tan }^{-1}}\left( \frac{1}{40} \right)\]

    View Answer play_arrow
  • question_answer145) ABC is a right angled isosceles triangle with\[\angle B=90{}^\circ \]. If D is a point on AB so that\[\angle CDB=15{}^\circ \]and, if\[AD=35\text{ }cm,\]then CD is equal to:

    A) \[35\sqrt{2}cm\]

    B) \[70\sqrt{2}cm\]

    C) \[\frac{35\sqrt{3}}{2}cm\]

    D) \[35\sqrt{6}cm\]

    E) \[\frac{35\sqrt{2}}{2}cm\]

    View Answer play_arrow
  • question_answer146) If\[\angle A=90{}^\circ \]in the triangle ABC, then \[{{\tan }^{-1}}\left( \frac{c}{a+b} \right)+{{\tan }^{-1}}\left( \frac{b}{a+c} \right)\]is equal to:

    A) 0

    B) 1

    C) \[\frac{\pi }{4}\]

    D) \[\frac{\pi }{6}\]

    E) \[\frac{\pi }{8}\]

    View Answer play_arrow
  • question_answer147) The shadow of a tower is found to be 60 m shorter when the suns altitude changes from \[30{}^\circ \]to\[60{}^\circ \]. The height of the tower from the ground is approximately equal to:

    A) 62 m

    B) 301 m

    C) 101 m

    D) 75 m

    E) 52 m

    View Answer play_arrow
  • question_answer148) ABCD is a rectangular field. A vertical lamp post of height 12m stands at the corner A. If the angle of elevation of its top from B is\[60{}^\circ \] and from C is\[45{}^\circ \], then the area of the field is:

    A) \[48\sqrt{2}\,sq\,m\]

    B) \[48\sqrt{3}\,sq\,m\]

    C) \[48\,sq\,m\]

    D) \[12\sqrt{2}\,sq\,m\]

    E) \[12\sqrt{3}\,sq\,m\]

    View Answer play_arrow
  • question_answer149) If the points\[(k,3),(2,k),(-k,3)\]are collinear, then the values of k are:

    A) 2, 3

    B) 1, 0

    C) 1, 2

    D) \[1,-1/2\]

    E) 0, 3

    View Answer play_arrow
  • question_answer150) If\[A(3,5),\text{ }B(-5,-4),C(7,10)\]are the vertices of a parallelogram, taken in the order, then the co-ordinates of the fourth vertex are:

    A) (10, 19)

    B) (15, 10)

    C) (19, 10)

    D) (19, 15)

    E) (15, 19)

    View Answer play_arrow
  • question_answer151) ABC is a triangle with vertices\[A(-1,4),\] \[B(6,-2)\]and\[C(-2,4)\]. D, E and F are the points which divide each AB, BC and CA respectively in the ratio\[3:1\]internally. Then, the centroid of me triangle DEF is:

    A) (3, 6)

    B) (1, 2)

    C) (4, 8)

    D) \[(-3,\text{ }6)\]

    E) \[(-1,2)\]

    View Answer play_arrow
  • question_answer152) If the pairs of lines\[{{x}^{2}}-2nxy-{{y}^{2}}=0\]and \[{{x}^{2}}-2mxy-{{y}^{2}}=0\]are such that one of them represents the bisectors of the angles between the other, then:

    A) \[\frac{1}{n}+\frac{1}{m}=0\]

    B) \[\frac{1}{n}-\frac{1}{m}=0\]

    C) \[nm-1=0\]

    D) \[nm+1=0\]

    E) \[\frac{1}{m}-\frac{1}{n}=0\]

    View Answer play_arrow
  • question_answer153) The angle between the pair of straight lines\[{{y}^{2}}{{\sin }^{2}}\theta -xy{{\sin }^{2}}\theta +{{x}^{2}}({{\cos }^{2}}\theta -1)=0\]is:

    A) \[\frac{\pi }{3}\]

    B) \[\frac{\pi }{4}\]

    C) \[\frac{\pi }{6}\]

    D) \[\frac{\pi }{2}\]

    E) \[\pi \]

    View Answer play_arrow
  • question_answer154) If the equation of base of an equilateral triangle is \[2x-y=1\]and the vertex is\[(-1,2),\]then the length of the side of the triangle is:

    A) \[\frac{2}{\sqrt{15}}\]

    B) \[\sqrt{\frac{20}{3}}\]

    C) \[\sqrt{\frac{8}{15}}\]

    D) \[\sqrt{\frac{15}{2}}\]

    E) \[\sqrt{2}\]

    View Answer play_arrow
  • question_answer155) The image of the origin with reference to the line\[4x+3y-25=0\]is:

    A) \[(-8,6)\]

    B) (8, 6)

    C) \[(-3,4)\]

    D) \[(8,-6)\]

    E) \[(-4,-3)\]

    View Answer play_arrow
  • question_answer156) The lines\[2x-3y=5\]and\[3x-4y=7\]are diameters of a circle having area as 154 sq unit. Then, the equation of the circle is:

    A) \[{{x}^{2}}+{{y}^{2}}+2x-2y=62\]

    B) \[{{x}^{2}}+{{y}^{2}}+2x-2y=47\]

    C) \[{{x}^{2}}+{{y}^{2}}-2x+2y=47\]

    D) \[{{x}^{2}}+{{y}^{2}}-2x+2y=62\]

    E) \[{{x}^{2}}+{{y}^{2}}-2x-2y=47\]

    View Answer play_arrow
  • question_answer157) A circle is drawn to cut a chord of length 2a unit along x-axis and to touch they-axis. The locus of the centre of the circle is:

    A) \[{{x}^{2}}+{{y}^{2}}={{a}^{2}}\]

    B) \[{{x}^{2}}-{{y}^{2}}={{a}^{2}}\]

    C) \[x+y={{a}^{2}}\]

    D) \[{{x}^{2}}-{{y}^{2}}=4{{a}^{2}}\]

    E) \[{{x}^{2}}+{{y}^{2}}=4{{a}^{2}}\]

    View Answer play_arrow
  • question_answer158) If the equation of the tangent to the circle \[{{x}^{2}}+{{y}^{2}}-2x+6y-6=0\]parallel to \[3x-4y+7=0\]is\[3x-4y+k=0,\]then the values of k are:

    A) \[5,-35\]

    B) \[-5,35\]

    C) \[7,-32\]

    D) \[-7,32\]

    E) \[3,-13\]

    View Answer play_arrow
  • question_answer159) The locus of a point which moves so that the ratio of the length of the tangents to the circles\[{{x}^{2}}+{{y}^{2}}+4x+3=0\]and\[{{x}^{2}}+{{y}^{2}}-6x+5=0\]is\[2:3,\]is:

    A) \[5{{x}^{2}}+5{{y}^{2}}-60x+7=0\]

    B) \[5{{x}^{2}}+5{{y}^{2}}+60x-7=0\]

    C) \[5{{x}^{2}}+5{{y}^{2}}-60x-7=0\]

    D) \[5{{x}^{2}}+5{{y}^{2}}+60x+7=0\]

    E) \[5{{x}^{2}}+5{{y}^{2}}+60x+12=0\]

    View Answer play_arrow
  • question_answer160) The foci of Ac ellipse\[\frac{{{x}^{2}}}{16}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\]and the hyperbola\[\frac{{{x}^{2}}}{144}-\frac{{{y}^{2}}}{81}=\frac{1}{25}\]coincide. Then, the value of\[{{b}^{2}}\]is:

    A) 1

    B) 5

    C) 7

    D) 9

    E) 36

    View Answer play_arrow
  • question_answer161) The eccentricity of the ellipse\[25{{x}^{2}}+16{{y}^{2}}-150x-175=0\]is:

    A) \[\frac{2}{5}\]

    B) \[\frac{2}{3}\]

    C) \[\frac{4}{5}\]

    D) \[\frac{3}{4}\]

    E) \[\frac{3}{5}\]

    View Answer play_arrow
  • question_answer162) Suppose S and S are foci of the ellipse\[\frac{{{x}^{2}}}{25}+\frac{{{y}^{2}}}{16}=1.\]If p is a variable point on the ellipse and if \[\Delta \] is area of the triangle PSS then the maximum value of\[\Delta \]is:

    A) 8

    B) 12

    C) 16

    D) 20

    E) 24

    View Answer play_arrow
  • question_answer163) The equation of the hyperbola in the standard from (whit transverse axis along the\[x-\]axis) having the length of the latus rectum = 9 unit and eccentricity\[=\frac{5}{4}\]is:

    A) \[\frac{{{x}^{2}}}{16}-\frac{{{y}^{2}}}{18}=1\]

    B) \[\frac{{{x}^{2}}}{36}-\frac{{{y}^{2}}}{27}=1\]

    C) \[\frac{{{x}^{2}}}{64}-\frac{{{y}^{2}}}{36}=1\]

    D) \[\frac{{{x}^{2}}}{36}-\frac{{{y}^{2}}}{64}=1\]

    E) \[\frac{{{x}^{2}}}{16}-\frac{{{y}^{2}}}{9}=1\]

    View Answer play_arrow
  • question_answer164) If \[|\overrightarrow{a}|=|\overrightarrow{b}|=1\]and\[|\overrightarrow{a}+\overrightarrow{b}|=\sqrt{3},\]then the value of \[(3\overrightarrow{a}-4\overrightarrow{b}).(2\overrightarrow{a}+5\overrightarrow{b})\]is:

    A) \[-21\]

    B) \[-\frac{21}{2}\]

    C) 21

    D) \[\frac{21}{2}\]

    E) \[\frac{59}{2}\]

    View Answer play_arrow
  • question_answer165) If\[|\overrightarrow{a}|=3,|\overrightarrow{b}|=4,|\overrightarrow{c}|=5\]and\[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\]are such that each is perpendicular to the sum of other two, then\[|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}|\]is:

    A) \[5\sqrt{2}\]

    B) \[\frac{5}{\sqrt{2}}\]

    C) \[10\sqrt{2}\]

    D) \[10\sqrt{3}\]

    E) \[5\sqrt{3}\]

    View Answer play_arrow
  • question_answer166) A unit vector in the plane of\[\hat{i}+2\hat{j}+\hat{k}\]and\[\hat{i}+\hat{j}+2\hat{k}\]hand perpendicular to\[2\hat{i}+\hat{j}+\hat{k}\]is:

    A) \[\hat{j}-\hat{k}\]

    B) \[\frac{\hat{i}+\hat{j}}{\sqrt{2}}\]

    C) \[\frac{\hat{j}+\hat{k}}{\sqrt{2}}\]

    D) \[\frac{\hat{j}-\hat{k}}{\sqrt{2}}\]

    E) \[5(\hat{j}-\hat{k})\]

    View Answer play_arrow
  • question_answer167) If\[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\]are unit coplanar vectors, then\[[2\overrightarrow{a}-\overrightarrow{b},2\overrightarrow{b}-\overrightarrow{c},2\overrightarrow{c}-\overrightarrow{a}]\]is equal to

    A) \[1\]

    B) \[0\]

    C) \[-\sqrt{3}\]

    D) \[\sqrt{3}\]

    E) \[6\]

    View Answer play_arrow
  • question_answer168) If\[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\]be vectors such that\[\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}=\overrightarrow{0},\] and\[|\overrightarrow{u}|=3,|\overrightarrow{v}|=4,|\overrightarrow{w}|=5,\]then \[\overrightarrow{u}.\overrightarrow{v}+\overrightarrow{v}.\overrightarrow{w}+\overrightarrow{w}.\overrightarrow{u}\]equal to:

    A) 47

    B) \[-47\]

    C) 0

    D) 25

    E) \[-25\]

    View Answer play_arrow
  • question_answer169) If \[\vec{a}\] is perpendicular to\[\overrightarrow{b}\]and\[\overrightarrow{c},|\overrightarrow{a}|=2,\]\[|\overrightarrow{b}|=3|\overrightarrow{c}|=4\]and the angle between\[\overrightarrow{b}\]and\[\overrightarrow{c}\]is\[\frac{2\pi }{3},\]then\[[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}]\]is equal to:

    A) \[4\sqrt{3}\]

    B) \[6\sqrt{3}\]

    C) \[12\sqrt{3}\]

    D) \[18\sqrt{3}\]

    E) \[8\sqrt{3}\]

    View Answer play_arrow
  • question_answer170) If\[\overrightarrow{a},\overrightarrow{b}\]and\[\overrightarrow{c}\]are perpendicular to\[\overrightarrow{b}+\overrightarrow{c},\overrightarrow{c}+\overrightarrow{a}\] and\[\overrightarrow{a}+\overrightarrow{b}\]respectively and, if \[|\overrightarrow{a}+\overrightarrow{b}|=6,|\overrightarrow{b}+\overrightarrow{c}|=8\]and\[|\overrightarrow{c}+\overrightarrow{a}|=10,\]then \[|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}|\]is equal to:

    A) \[5\sqrt{2}\]

    B) 50

    C) \[10\sqrt{2}\]

    D) 10

    E) 20

    View Answer play_arrow
  • question_answer171) If (2, 3, 5) is one end of a diameter of the sphere\[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-6x-12y-2z+20=0,\]then co-ordinates of the other end of the diameter are:

    A) (4, 3, 5)

    B) \[(4,9,-3)\]

    C) (4, 9, 3)

    D) \[(4,3,-3)\]

    E) (4, 9, 5)

    View Answer play_arrow
  • question_answer172) The equation of the plane through the point \[(2,-1,-3)\]and parallel to the lines\[\frac{x-1}{3}=\frac{y+2}{2}=\frac{z}{-4}\]and\[\frac{x}{2}=\frac{y-1}{-3}=\frac{z-2}{2}\]is:

    A) \[8x+14y+13z+37=0\]

    B) \[8x-14y+13z+37=0\]

    C) \[8x+14y-13z+37=0\]

    D) \[8x+14y+13z-37=0\]

    E) \[8x-14y-13z-37=0\]

    View Answer play_arrow
  • question_answer173) If a line makes angles\[\alpha ,\beta ,\gamma \]with the co-ordinate axes, then\[cos\text{ }2\alpha +cos\text{ }2\beta +cos\text{ }2\gamma \]is:

    A) 3

    B) \[-2\]

    C) 2

    D) \[-3\]

    E) \[-1\]

    View Answer play_arrow
  • question_answer174) If for a plane, the intercepts on the co-ordinate axes are 8,4,4, then the length of the perpendicular from the origin on to the plane is:

    A) \[\frac{8}{3}\]

    B) \[\frac{3}{8}\]

    C) \[3\]

    D) \[\frac{4}{3}\]

    E) \[\frac{4}{5}\]

    View Answer play_arrow
  • question_answer175) The equation of the sphere concentric with the sphere\[2{{x}^{2}}+2{{y}^{2}}+2{{z}^{2}}-6x+2y-4z=1\] and double its radius is:

    A) \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-x+y-z=1\]

    B) \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-6x+2y-4z=1\]

    C) \[2{{x}^{2}}+2{{y}^{2}}+2{{z}^{2}}-6x+2y-4z-15=0\]

    D) \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-3x+y-2z=1\]

    E) \[2{{x}^{2}}+2{{y}^{2}}+2{{z}^{2}}-6x+2y-4z-25=0\]

    View Answer play_arrow
  • question_answer176) If a plane meets the co-ordinate axes at A, B and C such that the centroid of the triangle is (1, 2, 4), then the equation of the plane is:

    A) \[x+2y+4z=12\]

    B) \[4x+2y+z=12\]

    C) \[x+2y+4z=3\]

    D) \[4x+2y+z=3\]

    E) \[x+y+z=12\]

    View Answer play_arrow
  • question_answer177) The position vector of the point where the line\[\overrightarrow{r}=\hat{i}-\hat{j}+\hat{k}+t(\hat{i}+\hat{j}-\hat{k})\]meets the plane \[\overrightarrow{r}.(\hat{i}+\hat{j}+\hat{k})=5\]is:

    A) \[5\hat{i}+\hat{j}-\hat{k}\]

    B) \[5\hat{i}+3\hat{j}-3\hat{k}\]

    C) \[2\hat{i}+\hat{j}+2\hat{k}\]

    D) \[5\hat{i}+\hat{j}+\hat{k}\]

    E) \[4\hat{i}+2\hat{j}-2\hat{k}\]

    View Answer play_arrow
  • question_answer178) If the distance of the point (1, 1, 1) from the origin is half its distance from the plane \[x+y+z+k=0,\]then k is equal to:

    A) \[\pm \,3\]

    B) \[\pm 6\]

    C) \[-3,9\]

    D) \[3,-9\]

    E) 3, 9

    View Answer play_arrow
  • question_answer179) Two persons A and B throw a die alternately till one of them gets a 3 and wins the game, the respective probabilities of winning, if A begins, are:

    A) \[\frac{7}{11},\frac{4}{11}\]

    B) \[\frac{6}{11},\frac{5}{11}\]

    C) \[\frac{5}{6},\frac{1}{6}\]

    D) \[\frac{4}{7},\frac{3}{7}\]

    E) \[\frac{1}{2},\frac{1}{2}\]

    View Answer play_arrow
  • question_answer180) If three natural numbers from 1 to 100 are selected randomly, then probability that all are divisible by both 2 and 3, is:

    A) \[\frac{4}{105}\]

    B) \[\frac{4}{33}\]

    C) \[\frac{4}{35}\]

    D) \[\frac{4}{1155}\]

    E) \[\frac{3}{1155}\]

    View Answer play_arrow
  • question_answer181) The average monthly salary of workers in a factory is Rs. 206. If the average monthly salary of males and females are Rs. 210 and Rs. 190 respectively, the percentage of female employed in the factory is:

    A) 10

    B) 50

    C) 30

    D) 40

    E) 20

    View Answer play_arrow
  • question_answer182) 5 boys and 5 girls are sitting in a row randomly. The probability that boys and girls sit alternatively is:

    A) \[\frac{5}{126}\]

    B) \[\frac{1}{42}\]

    C) \[\frac{4}{126}\]

    D) \[\frac{6}{126}\]

    E) \[\frac{1}{63}\]

    View Answer play_arrow
  • question_answer183) The function\[f\]satisfies the functional equation\[3f(x)+2f\left( \frac{x+59}{x-1} \right)=10x+30\]for all real\[x\ne 1,\]The value of\[f(7)\]is:

    A) 8

    B) 4

    C) \[-8\]

    D) 11

    E) 44

    View Answer play_arrow
  • question_answer184) The value of\[f\]at\[x=0\]so that function\[f(x)=\frac{{{2}^{x}}-{{2}^{-x}}}{x},x\ne 0,\]is continuous at\[x=0,\]is:

    A) 0

    B) log 2

    C) 4

    D) \[{{e}^{4}}\]

    E) log 4

    View Answer play_arrow
  • question_answer185) The domain of \[{{\sin }^{-1}}\left( {{\log }_{3}}x \right)\]is:

    A) \[[-1,1]\]

    B) \[[0,1]\]

    C) \[[0,\infty ]\]

    D) \[R\]

    E) \[\left[ \frac{1}{3},3 \right]\]

    View Answer play_arrow
  • question_answer186) \[\underset{x\to 0}{\mathop{\lim }}\,{{\left\{ \frac{1+\tan x}{1+\sin x} \right\}}^{\cos ecx}}\]is equal to:

    A) \[\frac{1}{e}\]

    B) 1

    C) e

    D) \[{{e}^{2}}\]

    E) \[\frac{1}{{{e}^{2}}}\]

    View Answer play_arrow
  • question_answer187) If \[y={{\sec }^{-1}}\frac{x+1}{x-1}+{{\sin }^{-1}}\frac{x-1}{x+1}\],then\[\frac{dy}{dx}\]is:

    A) \[1\]

    B) \[0\]

    C) \[\frac{x-1}{x+1}\]

    D) \[\frac{x+1}{x-1}\]

    E) \[\frac{{{x}^{2}}+1}{{{x}^{2}}-1}\]

    View Answer play_arrow
  • question_answer188) If\[y={{a}^{x}}.{{b}^{2x-1}},\]then\[\frac{{{d}^{2}}y}{d{{x}^{2}}}\]is:

    A) \[{{y}^{2}}.\log a{{b}^{2}}\]

    B) \[y.\log a{{b}^{2}}\]

    C) \[{{y}^{2}}\]

    D) \[y.{{(\log {{a}^{2}}b)}^{2}}\]

    E) \[y.{{(\log a{{b}^{2}})}^{2}}\]

    View Answer play_arrow
  • question_answer189) The value of\[\frac{d}{dx}\left[ {{\tan }^{-1}}\left( \frac{\sqrt{x}(3-x)}{1-3x} \right) \right]\]

    A) \[\frac{1}{2(1+x)\sqrt{x}}\]

    B) \[\frac{3}{(1+x)\sqrt{x}}\]

    C) \[\frac{2}{(1+x)\sqrt{x}}\]

    D) \[\frac{3}{2(1-x)\sqrt{x}}\]

    E) \[\frac{3}{2(1+x)\sqrt{x}}\]

    View Answer play_arrow
  • question_answer190) The derivative of\[y=(1-x)(2-x)...(n-x)\]at \[x=1\]is equal to:

    A) \[0\]

    B) \[(-1)(n-1)!\]

    C) \[n!-1\]

    D) \[{{(-1)}^{n-1}}(n-1)!\]

    E) \[{{(-1)}^{n}}(n-1)!\]

    View Answer play_arrow
  • question_answer191) Let\[f(x+y)=f(x)f(y)\]and\[f(x)=1+\sin (3x)g(x),\]where\[g(x)\]is continuous, then\[f(x)\]is:

    A) \[f(x)g(0)\]

    B) \[3g(0)\]

    C) \[f(x)\cos 3x\]

    D) \[3f(x)g(0)\]

    E) \[3f(x)g(x)\]

    View Answer play_arrow
  • question_answer192) If\[sin\text{ }y=x\text{ }sin(a+y),\]then\[\frac{dy}{dx}\]is:

    A) \[\sin (a+y)\]

    B) \[{{\sin }^{2}}(a+y)\]

    C) \[\frac{{{\sin }^{2}}(a+y)}{\sin a}\]

    D) \[\frac{\sin (a+y)}{\sin a}\]

    E) \[\cos (a+y)\]

    View Answer play_arrow
  • question_answer193) If\[y={{\tan }^{-1}}\left( \frac{a\cos x-b\sin x}{b\cos x+a\sin x} \right),\]then\[\frac{dy}{dx}\]is equal to:

    A) 2

    B) \[-1\]

    C) \[\frac{a}{b}\]

    D) 0

    E) \[\frac{b}{a}\]

    View Answer play_arrow
  • question_answer194) Let\[f\]be continuous on [1, 5] and differentiable in (1, 5). If\[f(1)=-3\]and\[f(x)\ge 9\]for all\[x\in (1,5)\]then:

    A) \[f(5)\ge 33\]

    B) \[f(5)\ge 36\]

    C) \[f(5)\le 36\]

    D) \[f(5)\ge 9\]

    E) \[f(5)\le 9\]

    View Answer play_arrow
  • question_answer195) If\[4{{x}^{2}}+p{{y}^{2}}=45\]and\[{{x}^{2}}-4{{y}^{2}}=5\]cut orthogonally, then the value of p is:

    A) \[\frac{1}{9}\]

    B) \[\frac{1}{3}\]

    C) 3

    D) 18

    E) 9

    View Answer play_arrow
  • question_answer196) If a particle moves such that the displacement is proportional to the square of the velocity acquired, then its acceleration is:

    A) proportional to\[{{s}^{2}}\]

    B) proportional to \[\frac{1}{{{s}^{2}}}\].

    C) proportional to \[s\].

    D) proportional to\[\frac{1}{s}\].

    E) a constant

    View Answer play_arrow
  • question_answer197) The maximum value of\[xy\]when\[x+2y=8\]is:

    A) 20

    B) 16

    C) 24

    D) 8

    E) 4

    View Answer play_arrow
  • question_answer198) The function\[f(x)={{\tan }^{-1}}(\sin x+\cos x),\]\[x>0\]is always an increasing function on the interval:

    A) \[(0,\pi )\]

    B) \[\left( 0,\frac{\pi }{2} \right)\]

    C) \[\left( 0,\frac{\pi }{4} \right)\]

    D) \[\left( 0,\frac{3\pi }{4} \right)\]

    E) \[\left( 0,\frac{5\pi }{4} \right)\]

    View Answer play_arrow
  • question_answer199) The radius of a cylinder is increasing at the rate of 3 m/s and its altitude is decreasing at the rate of 4 m/s. The rate of change of volume when radius is 4 m and altitude is 6 m, is:

    A) \[80\text{ }\pi \text{ }cu\text{ }m/s\]

    B) \[\text{144 }\pi \text{ }cu\text{ }m/s\]

    C) 80 cu m/s

    D) 64 cu m/s

    E) \[-\text{ }80\text{ }\pi \text{ }cu\text{ }m/s\]

    View Answer play_arrow
  • question_answer200) A ladder 10 m long rests against a vertical wall with the lower end on the horizontal ground. The lower end of the ladder is pulled along the ground away from the wall at the rate of 3 cm/s. The height of the upper end while it is descending at the rate of 4 cm/s, is:

    A) \[4\sqrt{3}m\]

    B) \[5\sqrt{3}m\]

    C) \[5\sqrt{2}m\]

    D) \[8\,m\]

    E) \[6\,m\]

    View Answer play_arrow
  • question_answer201) \[\int{\frac{dx}{\sin (x-a)\sin (x-b)}}\]is:

    A) \[\frac{1}{\sin (a-b)}\log \left| \frac{\sin (x-a)}{\sin (x-b)} \right|+c\]

    B) \[\frac{-1}{\sin (a-b)}\log \left| \frac{\sin (x-a)}{\sin (x-b)} \right|+c\]

    C) \[\log \sin (x-a)\sin (x-b)+c\]

    D) \[\log \left| \frac{\sin (x-a)}{\sin (x-b)} \right|\]

    E) \[\frac{1}{\sin (x-a)}\log \sin (x-a)\sin (x-b)+c\]

    View Answer play_arrow
  • question_answer202) If an antiderivative of\[f(x)\]is\[{{e}^{x}}\]and that of\[g(x)\]is \[\cos x,\]then\[\int{f(x)}\cos x\,dx+\]\[\int{g(x)}\,{{e}^{x}}dx\]is equal to:

    A) \[f(x)g(x)+c\]

    B) \[f(x)+g(x)+c\]

    C) \[{{e}^{x}}\cos x+c\]

    D) \[f(x)-g(x)+c\]

    E) \[{{e}^{x}}\cos x+f(x)g(x)+c\]

    View Answer play_arrow
  • question_answer203) \[\int{{{e}^{x\log a}}{{e}^{x}}}dx\]is equal to:

    A) \[\frac{{{a}^{x}}}{\log \,\,ae}+c\]

    B) \[\frac{{{e}^{x}}}{1+{{\log }_{e}}a}+c\]

    C) \[{{(ae)}^{x}}+c\]

    D) \[\frac{{{(ae)}^{x}}}{{{\log }_{e}}ae}+c\]

    E) \[\frac{{{a}^{x}}{{e}^{x}}}{{{\log }_{x}}a}+c\]

    View Answer play_arrow
  • question_answer204) \[\int{\sqrt{{{e}^{x}}-1}}dx\]is equal to

    A) \[2[\sqrt{{{e}^{x}}-1}-{{\tan }^{-1}}\sqrt{{{e}^{x}}-1}]+c\]

    B) \[\sqrt{{{e}^{x}}-1}-{{\tan }^{-1}}\sqrt{{{e}^{x}}-1}+c\]

    C) \[\sqrt{{{e}^{x}}-1}+{{\tan }^{-1}}\sqrt{{{e}^{x}}-1}+c\]

    D) \[2[\sqrt{{{e}^{x}}-1}+{{\tan }^{-1}}\sqrt{{{e}^{x}}-1}]+c\]

    E) \[2[\sqrt{{{e}^{x}}-1}-{{\tan }^{-1}}\sqrt{{{e}^{x}}+1}]+c\]

    View Answer play_arrow
  • question_answer205) If \[{{I}_{1}}=\int{{{\sin }^{-1}}}x\,dx\]and\[{{I}_{2}}=\int{{{\sin }^{-1}}}\sqrt{1-{{x}^{2}}}\,dx\]then:

    A) \[{{I}_{1}}={{I}_{2}}\]

    B) \[{{I}_{2}}=\frac{\pi }{2}{{I}_{1}}\]

    C) \[{{I}_{1}}+{{I}_{2}}=\frac{\pi }{2}x\]

    D) \[{{I}_{1}}+{{I}_{2}}=\frac{\pi }{2}\]

    E) \[{{I}_{1}}-{{I}_{2}}=\frac{\pi }{2}x\]

    View Answer play_arrow
  • question_answer206) \[\int{{{\cos }^{-3/7}}x{{\sin }^{-11/7}}}x\,dx\]is equal to:

    A) \[\log |{{\sin }^{4/7}}x|+c\]

    B) \[\frac{4}{7}{{\tan }^{4/7}}x+c\]

    C) \[\frac{-7}{4}{{\tan }^{-4/7}}x+c\]

    D) \[\log |{{\cos }^{3/7}}x|+c\]

    E) \[\frac{7}{4}{{\tan }^{-4/7}}x+c\]

    View Answer play_arrow
  • question_answer207) \[\int{\frac{(\sin \theta +\cos \theta )}{\sqrt{\sin 2\theta }}}d\theta \]is equal to:

    A) \[\log |\cos \theta -\sin \theta +\sqrt{\sin 2\theta }|+c\]

    B) \[\log |\sin \theta -\cos \theta +\sqrt{\sin 2\theta }|+c\]

    C) \[{{\sin }^{-1}}(\sin \theta -\cos \theta )+c\]

    D) \[{{\sin }^{-1}}(\sin \theta +\cos \theta )+c\]

    E) \[{{\sin }^{-1}}(\cos \theta -\sin \theta )+c\]

    View Answer play_arrow
  • question_answer208) \[\int_{\pi /6}^{\pi /3}{\frac{dx}{1+\sqrt{\tan x}}}\]is equal to:

    A) \[\frac{\pi }{12}\]

    B) \[\frac{\pi }{2}\]

    C) \[\frac{\pi }{6}\]

    D) \[\frac{\pi }{4}\]

    E) \[\frac{2\pi }{3}\]

    View Answer play_arrow
  • question_answer209) \[\int_{-\pi }^{\pi }{\frac{{{\sin }^{4}}x}{{{\sin }^{4}}x+{{\cos }^{4}}x}}dx\]is equal to:

    A) \[\frac{\pi }{4}\]

    B) \[\frac{\pi }{2}\]

    C) \[\frac{3\pi }{2}\]

    D) \[\frac{\pi }{4}\]

    E) \[\frac{2\pi }{3}\]

    View Answer play_arrow
  • question_answer210) The value of\[\int_{0}^{\frac{\pi }{2}}{\frac{{{2}^{\sin x}}}{{{2}^{\sin x}}+{{2}^{\cos x}}}}dx\] is:

    A) \[2\]

    B) \[\pi \]

    C) \[\frac{\pi }{4}\]

    D) \[2\pi \]

    E) \[\frac{\pi }{2}\]

    View Answer play_arrow
  • question_answer211) If\[f\]is continuous function, then:

    A) \[\int_{-2}^{2}{f(x)}dx=\int_{0}^{2}{[f(x)-f(-x)]}\,dx\]

    B) \[\int_{-3}^{5}{2f(x)}dx=\int_{-6}^{10}{f(x-1)}\,dx\]

    C) \[\int_{-3}^{5}{f(x)\,}dx=\int_{-4}^{4}{f(x-1)}\,dx\]

    D) \[\int_{-3}^{5}{f(x)\,}dx=\int_{-2}^{6}{f(x-1)}\,dx\]

    E) \[\int_{-3}^{5}{f(x)\,}dx=\int_{-6}^{10}{f\left( \frac{x}{2} \right)}\,dx\]

    View Answer play_arrow
  • question_answer212) The area of the region bounded by\[{{y}^{2}}=4ax\]and\[{{x}^{2}}=4ay,\text{ }a>0\]in sq unit, is:

    A) \[16\frac{{{a}^{2}}}{3}\]

    B) \[14\frac{{{a}^{2}}}{3}\]

    C) \[13\frac{{{a}^{2}}}{3}\]

    D) \[16{{a}^{2}}\]

    E) \[4{{a}^{2}}\]

    View Answer play_arrow
  • question_answer213) An integrating factor of the differential equation \[x\frac{dy}{dx}+y\log x=x{{e}^{x}}{{x}^{-\frac{1}{2}\log x}}\]\[(x>0)\]is:

    A) \[{{x}^{\log x}}\]

    B) \[{{(\sqrt{x})}^{\log x}}\]

    C) \[{{(\sqrt{e})}^{{{(\log x)}^{2}}}}\]

    D) \[{{e}^{{{x}^{2}}}}\]

    E) \[\frac{{{x}^{2}}}{2}\]

    View Answer play_arrow
  • question_answer214) The solution of \[{{e}^{dy/dx}}=(x+1),y(0)=3\]is:

    A) \[y=x\log x-x+2\]

    B) \[y=(x+1)\log |x+1|-x+3\]

    C) \[y=(x+1)\log |x+1|+x+3\]

    D) \[y=x\log x+x+3\]

    E) \[y=-(x+1)\log |x+1|+x+3\]

    View Answer play_arrow
  • question_answer215) Solution of the differential equation \[\frac{dy}{dx}\tan y=\sin (x+y)+\sin (x-y)\]is:

    A) \[sec\text{ }y+2\text{ }cos\text{ }x=c\]

    B) \[sec\text{ }y-2\text{ }cos\text{ }x=c\]

    C) \[cos\text{ }y-2\text{ }sin\text{ }x=c\]

    D) \[tan\text{ }y-2\text{ }sec\text{ }y=c\]

    E) \[sec\text{ }y+2\text{ }sin\text{ }x=c\]

    View Answer play_arrow
  • question_answer216) Solution of the differential equation \[\frac{dy}{dx}+\frac{y}{x}=\sin x\]is:

    A) \[x(y+\cos x)=\sin x+c\]

    B) \[x(y-\cos x)=\sin x+c\]

    C) \[x(y\cos x)=\sin x+c\]

    D) \[x(y-\cos x)=\cos x+c\]

    E) \[x(y+\cos x)=\cos x+c\]

    View Answer play_arrow
  • question_answer217) If \[{{N}_{a}}=\{an:n\in N\},\]then\[{{N}_{5}}\cap {{N}_{7}}\]is equal to:

    A) \[{{N}_{7}}\]

    B) \[N\]

    C) \[{{N}_{35}}\]

    D) \[{{N}_{5}}\]

    E) \[{{N}_{12}}\]

    View Answer play_arrow
  • question_answer218) If\[f(x)=\frac{\alpha \,\,x}{x+1},x\ne 1,\]for what value of \[\alpha \] is\[f[f(x)]=x?\]

    A) \[\sqrt{2}\]

    B) \[-\sqrt{2}\]

    C) 1

    D) 2

    E) \[-1\]

    View Answer play_arrow
  • question_answer219) If\[n(A)=4,n(B)=3,n(A\times B\times C)=24,\]then\[n(C)\]is equal to:

    A) 288

    B) 1

    C) 12

    D) 17

    E) 2

    View Answer play_arrow
  • question_answer220) Two finite sets have m and n elements respectively. The total number of subsets of first set is 56 more than the total number of subsets of the second set. The values of m and n respectively are:

    A) 7, 6

    B) 6, 3

    C) 5, 1

    D) 7, 8

    E) 3, 6

    View Answer play_arrow
  • question_answer221) The number of elements in the set\[\{(a,b):\]\[2{{a}^{2}}+3{{b}^{2}}=35,\text{ }a,b\in Z\},\]where Z is the set of all integers, is:

    A) 2

    B) 4

    C) 8

    D) 12

    E) 16

    View Answer play_arrow
  • question_answer222) If\[z=r{{e}^{i\theta }},\]then\[|{{e}^{iz}}|\]is equal to:

    A) \[1\]

    B) \[{{e}^{2r\sin \theta }}\]

    C) \[{{e}^{r\sin \theta }}\]

    D) \[r{{e}^{\sin \theta }}\]

    E) \[{{e}^{-r\sin \theta }}\]

    View Answer play_arrow
  • question_answer223) \[{{i}^{2}}+{{i}^{4}}+{{i}^{6}}+...\]upto\[(2k+1)\]terms,\[k\in N\]is:

    A) 0

    B) 1

    C) \[-1\]

    D) k

    E) \[k+1\]

    View Answer play_arrow
  • question_answer224) If\[z=\sqrt{2}-i\sqrt{2}\]is rotated through an angle\[45{}^\circ \]in the anticlockwise direction about the origin, then the co-ordinates of its new position are:

    A) \[(2,0)\]

    B) \[(\sqrt{2},\sqrt{2})\]

    C) \[(\sqrt{2},-\sqrt{2})\]

    D) \[(\sqrt{2},0)\]

    E) \[(4,0)\]

    View Answer play_arrow
  • question_answer225) If\[z=\frac{7-i}{3-4i},\]then\[{{z}^{14}}\]is equal to:

    A) \[{{2}^{7}}\]

    B) \[{{2}^{7}}i\]

    C) \[{{2}^{14}}i\]

    D) \[-{{2}^{7}}i\]

    E) \[-{{2}^{14}}\]

    View Answer play_arrow
  • question_answer226) If\[{{(\sqrt{8}+i)}^{50}}={{3}^{49}}(a+ib),\]then\[{{a}^{2}}+{{b}^{2}}\]is:

    A) 3

    B) 8

    C) 9

    D) \[\sqrt{8}\]

    E) 4

    View Answer play_arrow
  • question_answer227) If\[3{{p}^{2}}=5p+2\]and\[3{{q}^{2}}=5q+2\]where\[p\ne q,\]then the equation whose roots are\[3p-2q\] and\[3q-2p\]is:

    A) \[3{{x}^{2}}-5x-100=0\]

    B) \[5{{x}^{2}}+3x+100=0\]

    C) \[3{{x}^{2}}-5x+100=0\]

    D) \[3{{x}^{2}}+5x-100=0\]

    E) \[5{{x}^{2}}-3x-100=0\]

    View Answer play_arrow
  • question_answer228) If\[x=8+3\sqrt{7}\]and\[xy=1,\]then the value of\[\frac{1}{{{x}^{2}}}+\frac{1}{{{y}^{2}}}\]is:

    A) 254

    B) 192

    C) 292

    D) 66

    E) 62

    View Answer play_arrow
  • question_answer229) If\[\alpha \]and\[\beta \]are the roots of the equation\[{{x}^{2}}-6x+a=0\]and satisfy the relation \[3\alpha +2\beta =16,\]then the value of a is:

    A) \[-8\]

    B) 8

    C) \[-16\]

    D) 9

    E) none of these

    View Answer play_arrow
  • question_answer230) The solution set of the equation\[pq{{x}^{2}}-{{(p+q)}^{2}}x+{{(p+q)}^{2}}=0\]is:

    A) \[\left\{ \frac{p}{q},\frac{q}{p} \right\}\]

    B) \[\left\{ pq,\frac{p}{q} \right\}\]

    C) \[\left\{ \frac{q}{p},pq \right\}\]

    D) \[\left\{ \frac{p+q}{p},\frac{p+q}{q} \right\}\]

    E) \[\left\{ \frac{p-q}{p},\frac{p-q}{q} \right\}\]

    View Answer play_arrow
  • question_answer231) If the roots a, Rot the equation \[\frac{{{x}^{2}}-bx}{ax-c}=\frac{\lambda -1}{\lambda +1}\]are such that\[\alpha +\beta =0,\]then the value of\[\lambda \]is:

    A) \[\frac{a-b}{a+b}\]

    B) \[c\]

    C) \[\frac{1}{c}\]

    D) \[\frac{a+b}{a-b}\]

    E) \[\frac{1}{ab}\]

    View Answer play_arrow
  • question_answer232) If\[x,y,z\]are in AP, then \[\frac{1}{\sqrt{x}+\sqrt{y}},\frac{1}{\sqrt{z}+\sqrt{x}},\] \[\frac{1}{\sqrt{y}+\sqrt{z}}\] are in:

    A) AP

    B) GP

    C) HP

    D) AP and HP

    E) AP and GP

    View Answer play_arrow
  • question_answer233) If\[{{A}_{i}}\left[ \begin{matrix} {{a}^{i}} & {{b}^{i}} \\ {{b}^{i}} & {{a}^{i}} \\ \end{matrix} \right]\]and, if\[|a|<1,|b|<1,\]then \[\sum\limits_{i=1}^{\infty }{det({{A}_{i}})}\] is equal to:

    A) \[\frac{{{a}^{2}}}{{{(1-a)}^{2}}}-\frac{{{b}^{2}}}{{{(1-b)}^{2}}}\]

    B) \[\frac{{{a}^{2}}-{{b}^{2}}}{(1-{{a}^{2}})(1-{{b}^{2}})}\]

    C) \[\frac{{{a}^{2}}}{{{(1-a)}^{2}}}+\frac{{{b}^{2}}}{{{(1-b)}^{2}}}\]

    D) \[\frac{{{a}^{2}}}{{{(1+a)}^{2}}}-\frac{{{b}^{2}}}{{{(1+b)}^{2}}}\]

    E) \[\frac{a}{1+a}-\frac{b}{1+b}\]

    View Answer play_arrow
  • question_answer234) The product\[(32){{(32)}^{1/6}}{{(32)}^{1/36}}.....\]to\[\infty \]is:

    A) 16

    B) 32

    C) 64

    D) 0

    E) 62

    View Answer play_arrow
  • question_answer235) If AM and GM of\[x\]and y are in the ratio\[p:q,\]then\[x:y\]is:

    A) \[p-\sqrt{{{p}^{2}}+{{q}^{2}}}:p+\sqrt{{{p}^{2}}+{{q}^{2}}}\]

    B) \[p+\sqrt{{{p}^{2}}-{{q}^{2}}}:p-\sqrt{{{p}^{2}}-{{q}^{2}}}\]

    C) \[p:q\]

    D) \[p+\sqrt{{{p}^{2}}+{{q}^{2}}}:p-\sqrt{{{p}^{2}}+{{q}^{2}}}\]

    E) \[q+\sqrt{{{p}^{2}}-{{q}^{2}}}:q-\sqrt{{{p}^{2}}-{{q}^{2}}}\]

    View Answer play_arrow
  • question_answer236) If\[x,y,z\]are in AP and\[{{\tan }^{-1}}x,{{\tan }^{-1}}y\]and \[{{\tan }^{-1}}z\] are also in AP, then:

    A) \[x=y=z\]

    B) \[x=y=-z\]

    C) \[x=1,y=2,z=3\]

    D) \[x=2,y=4,z=6\]

    E) \[x=2y=3z\]

    View Answer play_arrow
  • question_answer237) The coefficient of\[{{x}^{3}}\]the expansion of\[{{3}^{x}}\]is:

    A) \[\frac{{{3}^{3}}}{6}\]

    B) \[\frac{{{(\log 3)}^{3}}}{3}\]

    C) \[\frac{\log ({{3}^{3}})}{6}\]

    D) \[\frac{{{(\log 3)}^{3}}}{6}\]

    E) \[\frac{3}{3!}\]

    View Answer play_arrow
  • question_answer238) The sum of the series\[1+\frac{3}{2!}+\frac{7}{3!}+\frac{15}{4!}+....\]to\[\infty \]is:

    A) \[e(e+1)\]

    B) \[e(1-e)\]

    C) \[3e-1\]

    D) \[3e\]

    E) \[e(e-1)\]

    View Answer play_arrow
  • question_answer239) If\[{{\log }_{0.3}}(x-1)<{{\log }_{0.09}}(x-1),\]then\[x\ne 1\]lies in:

    A) (1, 2)

    B) \[(0,\text{ }1)\]

    C) \[(1,\infty )\]

    D) \[(2,\infty )\]

    E) \[(0.09,0.3)\]

    View Answer play_arrow
  • question_answer240) A student is to answer 10 out of 13 questions in an examination such that he must choose at least 4 from the first five questions. The number of choices available to him is:

    A) 140

    B) 196

    C) 280

    D) 346

    E) 265

    View Answer play_arrow

   



LIMITED OFFER HURRY UP! OFFER AVAILABLE ON ALL MATERIAL TILL TODAY ONLY!

You need to login to perform this action.
You will be redirected in 3 sec spinner

Free
Videos