CET Karnataka Engineering CET - Karnataka Engineering Solved Paper-2003

  • question_answer
    The function \[f(x)=\left| x \right|+\frac{\left| x \right|}{x}\] is :

    A)  discontinuous at origin because \[\left| x \right|\] is discontinuous there

    B)  continuous at origin

    C)  discontinuous at origin because both \[\left| x \right|\] and \[\frac{\left| x \right|}{x}\] are discontinuous there

    D)  discontinuous at the origin because is discontinuous there.

    Correct Answer: D

    Solution :

    Let \[f(x)=|x|+\frac{|x|}{x}\] Let us consider                 \[f(x)={{f}_{1}}(x)+{{f}_{2}}(x)\] Now at \[x=0\]                 \[{{f}_{1}}(0)=0\] LHL         \[=\lim \,\,|x|=0\]                 \[x\to {{0}^{-}}\] and RHL                \[=\lim \,\,|x|=0\]                                 \[x\to {{0}^{+}}\] \[\therefore \,\,{{f}_{1}}(x)\] is continuous at \[x=0\] Now consider \[{{f}_{2}}(x)\] at            \[x=0\]                 \[{{f}_{2}}(0)=0\] Now LHL \[\lim \,\frac{|x|}{x}\]                 \[x\to {{0}^{-}}\] Put \[x=0-h\] \[\lim \,\frac{|0-h|}{0-h}\] \[x\to {{0}^{-}}\]                 \[=\lim -\frac{h}{h}=-1\]                 \[x\to {{0}^{-}}\] now RHL \[\lim \,\frac{|x|}{x}\]                 \[x\to {{0}^{+}}\]                 \[=\lim \,\left| \frac{0+h}{0+h} \right|\]               [Put \[x=0+h\]]                 \[x\to {{0}^{+}}\]                 \[=\lim \,\frac{h}{h}=I\]                 \[x\to 0\] \[\therefore \] \[LHL\ne RHL\] \[\therefore \,\,{{f}_{2}}(x)\] is discontinuous at origin. \[\therefore \,\,f(x)=|x|+\frac{|x|}{x}\] is discontinuous at \[x=0\] because \[\frac{|x|}{x}\] is discontinuous there.


You need to login to perform this action.
You will be redirected in 3 sec spinner