J & K CET Engineering J and K - CET Engineering Solved Paper-2003

  • question_answer
    \[\int_{0}^{1}{{{\cot }^{-1}}(1-x+{{x}^{2}})dx}\] is equal to

    A)  \[\pi -\log 2\]

    B)  \[\pi +\log 2\]

    C)  \[\frac{\pi }{2}+\log 2\]

    D)  \[\frac{\pi }{2}-\log 2\]

    Correct Answer: D

    Solution :

    Let \[I=\int_{0}^{1}{{{\cot }^{-1}}\,(1-x+{{x}^{2}})dx}\] \[=\int_{0}^{1}{{{\tan }^{-1}}}\left( \frac{1}{{{x}^{2}}-x+1} \right)dx\] \[=\int_{0}^{1}{{{\tan }^{-1}}}\left( \frac{x-(x-1)}{1+x(x-1)} \right)dx\] \[=\int_{0}^{1}{{{\tan }^{-1}}}\,\,x\,dx-\int_{0}^{1}{{{\tan }^{-1}}}(x-1)dx\] \[=\int_{0}^{1}{{{\tan }^{-1}}}\,\,x\,dx-\int_{0}^{1}{{{\tan }^{-1}}}(1-x-1)dx\] \[=2\int_{0}^{1}{{{\tan }^{-1}}\,x\,dx=2\left[ x\,{{\tan }^{-1}}x-\int{\frac{x}{1+{{x}^{2}}}dx} \right]_{0}^{1}}\] \[=2\left[ x\,\,{{\tan }^{-1}}\,x-\frac{1}{2}\,\log (1+{{x}^{2}}) \right]_{0}^{1}\] \[=2\left[ \left( 1\,{{\tan }^{-1}}1-\frac{1}{2}\log \,2 \right)-\left( 0-\frac{1}{2}\,\log 1 \right) \right]\] \[=\frac{\pi }{2}-\log 2\]


You need to login to perform this action.
You will be redirected in 3 sec spinner