J & K CET Engineering J and K - CET Engineering Solved Paper-2003

  • question_answer
    If \[\omega \] is a cube root of unity, then a root of the equation      \[\left| \begin{matrix}    x+1 & \omega  & {{\omega }^{2}}  \\    \omega  & x+{{\omega }^{2}} & 1  \\    {{\omega }^{2}} & 1 & x+\omega   \\ \end{matrix} \right|=0\] is

    A)  \[x=0\]

    B)  \[x=1\]

    C)  \[x=\omega \]

    D)  \[x={{\omega }^{2}}\]

    Correct Answer: A

    Solution :

    Given that,   \[\left| \begin{matrix}    x+1 & \omega  & {{\omega }^{2}}  \\    \omega  & x+{{\omega }^{2}} & 1  \\    {{\omega }^{2}} & 1 & x+\omega   \\ \end{matrix} \right|=0\] Applying \[{{C}_{1}}\to {{C}_{1}}+{{C}_{2}}+{{C}_{3}}\] \[\Rightarrow \] \[\left| \begin{matrix}    x+1+\omega +{{\omega }^{2}} & \omega  & {{\omega }^{2}}  \\    x+1+\omega +{{\omega }^{2}} & x+{{\omega }^{2}} & 1  \\    x+1+\omega +{{\omega }^{2}} & 1 & x+\omega   \\ \end{matrix} \right|=0\] \[\Rightarrow \] \[x\left| \begin{matrix}    1 & \omega  & {{\omega }^{2}}  \\    1+ & x+{{\omega }^{2}} & 1  \\    1 & 1 & x+\omega   \\ \end{matrix} \right|=0\] \[(\because \,\,1+\omega +{{\omega }^{2}}=0)\] Applying \[{{R}_{2}}\to {{R}_{2}}-{{R}_{1}}\] and \[{{R}_{3}}\to {{R}_{3}}-{{R}_{1}}\] \[\Rightarrow \] \[\left| \begin{matrix}    1 & \omega  & {{\omega }^{2}}  \\    0 & x+{{\omega }^{2}}-\omega  & 1-{{\omega }^{2}}  \\    0 & 1-\omega  & x+\omega -{{\omega }^{2}}  \\ \end{matrix} \right|=0\] \[\Rightarrow \] \[x[1(x+{{\omega }^{2}}-\omega )(x+\omega -{{\omega }^{2}})\] \[-(1-\omega )\,\,(1-{{\omega }^{2}})]=0\] \[\Rightarrow \] \[x[\{{{x}^{2}}-{{({{\omega }^{2}}-\omega )}^{2}}\}-(2-\omega -{{\omega }^{2}})]=0\] \[\Rightarrow \] \[x[{{x}^{2}}+2-\omega -{{\omega }^{2}}-(2-\omega -{{\omega }^{2}})]=0\] \[\Rightarrow \] \[{{x}^{3}}=0\] \[\Rightarrow \] \[x=0\]


You need to login to perform this action.
You will be redirected in 3 sec spinner