J & K CET Engineering J and K - CET Engineering Solved Paper-2005

  • question_answer
    If x is any arbitrary constant, then \[\int{{{2}^{{{2}^{{{2}^{x}}}}}}}.\,{{2}^{{{2}^{x}}}}.\,{{2}^{x}}\,\,dx\]is equal to

    A)  \[\frac{\int{{{2}^{{{2}^{x}}}}}\,dx}{{{(In\,\,2)}^{3}}}+c\]

    B)  \[\frac{\int{{{2}^{{{2}^{{{2}^{x}}}}}}}\,dx}{{{(In\,\,2)}^{3}}}+c\]

    C)  \[\int{{{2}^{{{2}^{{{2}^{x}}}}}}}\,\,{{(In\,\,2)}^{3}}+c\]

    D)  None of the above

    Correct Answer: D

    Solution :

    Let  \[I=\int{{{2}^{{{2}^{{{2}^{x}}}}}}}.\,\,\,{{2}^{{{2}^{x}}}}.\,\,{{2}^{x}}dx\] Put \[{{2}^{{{2}^{{{2}^{x}}}}}}=t\] \[\Rightarrow \] \[{{2}^{{{2}^{{{2}^{x}}}}}}{{.2}^{{{2}^{x}}}}{{.2}^{x}}{{(\log \,2)}^{3}}dx=dt\] \[\therefore \] \[I=\int{\frac{dt}{{{(\log \,2)}^{3}}}}\] \[\therefore \] \[I=\frac{t}{{{(\log \,2)}^{3}}}=\frac{{{2}^{{{2}^{{{2}^{x}}}}}}}{{{(\log \,2)}^{3}}}+c\]


You need to login to perform this action.
You will be redirected in 3 sec spinner