J & K CET Engineering J and K - CET Engineering Solved Paper-2009

  • question_answer
    Let \[f(x)={{x}^{3}}.\]. Use mean value theorem to write \[\frac{f(x+h)-f(x)}{h}=f'(x+\theta h)\]  , with \[0<\theta <1\]. If \[x\ne 0,\]then \[\underset{h\to 0}{\mathop{\lim }}\,\,\,\theta \] is equal to

    A)  \[-1\]

    B)  \[-0.5\]

    C)  \[0.5\]

    D)  \[1\]

    Correct Answer: C

    Solution :

    Given,  \[f(x)={{x}^{3}}\] \[\therefore \] \[f(x+h)={{(x+h)}^{3}}\] Now, \[f'(x)=3{{x}^{2}}\] \[\therefore \]  \[f'(x+\theta h)=3{{(x+\theta h)}^{2}}\] Given,   \[\frac{f(x+h)-f(x)}{h}=f'(x+\theta h)\] \[\Rightarrow \] \[\frac{{{(x+h)}^{3}}-{{x}^{3}}}{h}=3{{(x+\theta h)}^{2}}\] \[\Rightarrow \] \[\frac{{{x}^{3}}+{{h}^{3}}+3xh(x+h)-{{x}^{3}}}{h}\] \[=3({{x}^{2}}+{{\theta }^{2}}{{h}^{2}}+2x\theta h)\] \[\Rightarrow \] \[{{h}^{2}}+3{{x}^{2}}+3xh=3{{x}^{2}}+3{{\theta }^{2}}{{h}^{2}}+6x\theta h\] \[\Rightarrow \] \[3x=3{{\theta }^{2}}h+6x\,\theta \] Taking limit on both sides, we get \[\underset{h\to 0}{\mathop{\lim }}\,\,(h+3x)=\underset{h\to 0}{\mathop{\lim }}\,(3{{\theta }^{2}}h+6x\theta )\] \[\Rightarrow \] \[3x=6\,\,\underset{h\to 0}{\mathop{\lim }}\,\theta \] \[\Rightarrow \] \[\underset{h\to 0}{\mathop{\lim }}\,\theta =\frac{1}{2}=0.5\]


You need to login to perform this action.
You will be redirected in 3 sec spinner