J & K CET Engineering J and K - CET Engineering Solved Paper-2011

  • question_answer
    If \[{{z}_{r}}=\cos \,\left( \frac{\pi }{{{3}^{r}}} \right)+i\,\,\sin \left( \frac{\pi }{{{3}^{r}}} \right),\]then \[{{z}_{1}}.{{z}_{2}}.{{z}_{3}}....\]  to \[\infty \] is equal to

    A)  \[-1\]   

    B)  \[0\]

    C)  \[-\,\,i\]  

    D)  \[i\]

    Correct Answer: D

    Solution :

    \[{{z}_{r}}=\cos \,\left( \frac{\pi }{{{3}^{r}}} \right)+i\,\,\sin \,\left( \frac{\pi }{{{3}^{r}}} \right)\] \[{{z}_{r}}={{e}^{i\,\pi /{{3}^{r}}}},\,\,{{z}_{1}}={{e}^{2/3}},\,{{z}_{2}}={{e}^{i\,z/{{3}^{2}}}},{{z}_{3}}={{e}^{i\,z/{{3}^{3}}}},.....\] so on. Now, \[{{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty ={{e}^{i\pi /3}}.{{e}^{i\pi /{{3}^{2}}}}.{{e}^{i\pi /{{3}^{3}}}}.....\infty \] \[={{e}^{i\pi \,(1/3+1/{{3}^{2}}+1/{{3}^{3}}.+....\infty )}}\] \[=e{{\,}^{i\,\pi }}\,\left\{ \frac{1/3}{1-1/3} \right\}\] \[\Rightarrow \] \[={{e}^{i\pi \times 1/2}}=i\]


You need to login to perform this action.
You will be redirected in 3 sec spinner