J & K CET Engineering J and K - CET Engineering Solved Paper-2011

  • question_answer
    Let \[f(x)=\frac{3}{1+{{3}^{\tan \,x}}}\]. Then, which of the following is true?

    A)  \[\underset{x\to \frac{{{\pi }^{-}}}{2}}{\mathop{\lim }}\,\,\,f(x)\,=3\]

    B)  \[\underset{x\to \frac{{{\pi }^{+}}}{2}}{\mathop{\lim }}\,\,\,f(x)\,=0\]

    C)  \[\underset{x\to \frac{{{\pi }^{+}}}{2}}{\mathop{\lim }}\,\,\,f(x)\,=3\]

    D)  \[\underset{x\to \frac{\pi }{2}}{\mathop{\lim }}\,\,\,f(x)\] exists

    Correct Answer: C

    Solution :

    \[f(x)=\frac{3}{1+{{3}^{\tan x}}}\] LHL at \[\left( x=\frac{\pi }{2} \right),\] \[f\left( \frac{\pi }{2}-0 \right)=\underset{h\to 0}{\mathop{\lim }}\,\,f\left( \frac{\pi }{2}-h \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{3}{1+{{3}^{\tan \left( \frac{\pi }{2}-h \right)}}}\] \[=\underset{h\to 0}{\mathop{\lim }}\,\,\frac{3}{1+{{3}^{\cot \,h}}}=\frac{3}{1+{{3}^{\cot \,0}}}\] \[\Rightarrow \] \[\frac{3}{1+{{(3)}^{\infty }}}=\frac{3}{1+\infty }=0\] RHL at \[\left( x=\frac{\pi }{2} \right),\] \[f\left( \frac{\pi }{2}+0 \right)=\underset{h\to 0}{\mathop{\lim }}\,\,f\left( \frac{\pi }{2}+h \right)=\underset{h\to 0}{\mathop{\lim }}\,\,\frac{3}{1+{{3}^{\tan \left( \frac{\pi }{2}+h \right)}}}\] \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{3}{1+{{3}^{-cot\,h}}}=\frac{3}{1+{{3}^{-\cot \,0}}}\] \[=\frac{3}{1+{{3}^{-\infty }}}=\frac{3}{1+0}=3\] Hence,  \[\underset{x\to \frac{{{\pi }^{+}}}{2}}{\mathop{\lim }}\,\,\,f(x)=3\]


You need to login to perform this action.
You will be redirected in 3 sec spinner