J & K CET Engineering J and K - CET Engineering Solved Paper-2012

  • question_answer
     Let  \[a>0,b>0\]and \[f(x)=\left| \begin{matrix}    x & a & a  \\    b & x & a  \\    b & b & x  \\ \end{matrix} \right|,\] then which of the following statement is true?

    A)  \[f(x)\] has a local minimum at \[x=\sqrt{ab}.\]

    B)  \[f(x)\] has a local maximum at \[x=\sqrt{ab}.\]

    C)  \[f(x)\]has a neither local minimum at \[x=\sqrt{ab}.\] nor local maximum at \[x=\sqrt{ab}.\].

    D)  None of the above

    Correct Answer: A

    Solution :

    Given,  \[f(x)=\left| \begin{matrix}    x & a & a  \\    b & x & a  \\    b & b & x  \\ \end{matrix} \right|\] \[=x({{x}^{2}}-ab)-a(bx-ab)+a({{b}^{2}}-bx)\] \[\Rightarrow \] \[f(x)={{x}^{3}}-3abx+{{a}^{2}}b+a{{b}^{2}}\] On differentiating w. r. t. x, we get \[f'(x)=3{{x}^{2}}-3ab\] Put \[f'(x)=0,\] \[3{{x}^{2}}-3ab=0\] \[\Rightarrow \] \[x=\pm \sqrt{ab}\] Now, \[f'\,'(x)=9x\] At \[x=\sqrt{ab},\] \[f'\,'(x)=9\sqrt{ab}>0,\] (minima) Hence,  \[f(x)\] has a local minimum at \[x=\sqrt{ab}.\]


You need to login to perform this action.
You will be redirected in 3 sec spinner