J & K CET Engineering J and K - CET Engineering Solved Paper-2013

  • question_answer
    If \[\left\{ \begin{matrix}    \frac{(1-\cos \,4x)}{{{x}^{2}}}, & if & x<0  \\    a, & if & x=0,  \\    \frac{\sqrt{x}}{\sqrt{(16+\sqrt{x})}-4}, & if & x>0  \\ \end{matrix} \right.\]then \[f(x)\] is continuous at \[x=0,\] for a

    A)  \[4\]      

    B)  \[\sqrt{32}\]

    C)  \[8\]      

    D)  \[16\]

    Correct Answer: C

    Solution :

    Given,  \[f(x)=\left\{ \begin{matrix}    \frac{(1-\cos 4x)}{{{x}^{2}}}, & if & x<0  \\    a, & if & x=0  \\    \frac{\sqrt{x}}{\sqrt{(16+\sqrt{x})-4}}, & if & x>0  \\ \end{matrix} \right.\] LHL= \[f(0-0)=\underset{h\to 0}{\mathop{\lim }}\,f(0-h)\] \[\underset{h\to 0}{\mathop{\lim }}\,\frac{1-\cos \,4(0-h)}{{{(0-h)}^{2}}}\] \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{\left\{ \frac{{{(-4h)}^{2}}}{2!}-\frac{{{(-4h)}^{4}}}{4!}+..... \right\}}{{{(-h)}^{2}}}\] \[=\underset{h\to 0}{\mathop{\lim }}\,\,\left\{ \frac{\frac{16{{h}^{2}}}{2!}-\frac{{{(-4h)}^{4}}}{4!}+....}{{{(-h)}^{2}}} \right\}\] \[=\underset{h\to 0}{\mathop{\lim }}\,\,\,\frac{16}{2!}-\frac{{{4}^{2}}{{h}^{2}}}{4!}+....\] RHL \[=f(0+0)=\underset{h\to 0}{\mathop{\lim }}\,\,f(0+h)\] \[=\underset{h\to 0}{\mathop{\lim }}\,\,\,\frac{\sqrt{h}}{\sqrt{16+\sqrt{h}}-4}\] \[\left( \frac{0}{0}\,form \right)\] Using ?L? Hospital rule, \[=\underset{h\to 0}{\mathop{\lim }}\,\,\frac{1}{2\sqrt{h}}\times \frac{1}{2\sqrt{16+\sqrt{h}\frac{1}{2\sqrt{h}}}}\] \[=\underset{h\to 0}{\mathop{\lim }}\,\,2\sqrt{16+\sqrt{h}}=2\sqrt{16+0}\] \[=2\times 4=8\] Since, \[f(x)\] is continuous at \[x=0.\] \[\therefore \] \[LHL=RHL=f(0)\] \[\Rightarrow \] \[a=8\]


You need to login to perform this action.
You will be redirected in 3 sec spinner