J & K CET Engineering J and K - CET Engineering Solved Paper-2014

  • question_answer Solve the equation \[{{x}^{2}}-\sqrt{3}x+1=0\]

    A)  \[x=(-\sqrt{3}\,\,\pm \,\,2i)/2\]  

    B)  \[x=(-\sqrt{3}\,\,\pm \,i)/2\]

    C)  \[x=(-\sqrt{3}\,\,\pm \,i)\]     

    D)  \[x=(\sqrt{3}\,\,\pm \,i)/2\]

    Correct Answer: D

    Solution :

    Given equation is \[{{x}^{2}}-\sqrt{3}x+1=0\] \[\therefore \] \[x=\frac{+\sqrt{3}\pm \sqrt{{{(-\sqrt{3})}^{2}}-4}}{2}\] \[=\frac{\sqrt{3}\pm \sqrt{3-4}}{2}=\frac{\sqrt{3}\pm i}{2}\]

adversite


You need to login to perform this action.
You will be redirected in 3 sec spinner

Free
Videos