JAMIA MILLIA ISLAMIA Jamia Millia Islamia Solved Paper-2005

  • question_answer
        \[{{I}_{n}}=\int_{0}^{\pi /4}{{{\tan }^{n}}x}dx,\]then\[\underset{n\to \infty }{\mathop{\lim }}\,n[{{I}_{n}}+{{I}_{n+2}}]\]equals:

    A)  \[\frac{1}{2}\]                                  

    B)  1

    C)  \[\infty \]                                          

    D)  zero

    Correct Answer: B

    Solution :

                    \[{{I}_{n}}+{{I}_{n+2}}=\int_{0}^{\pi /4}{{{\tan }^{n}}x}(1+{{\tan }^{2}}x)dx\] \[=\int_{0}^{\pi /4}{{{\tan }^{n}}x{{\sec }^{2}}x}dx\] \[=\int_{0}^{1}{{{t}^{n}}\,dt}\]where \[t=\tan x\] \[{{I}_{n}}+{{I}_{n+2}}=\frac{1}{n+1}\] \[\Rightarrow \]               \[\underset{n\to \infty }{\mathop{\lim }}\,n\left[ {{I}_{n}}+{{I}_{n+2}} \right]\]                 \[=\underset{n\to \infty }{\mathop{\lim }}\,n.\frac{1}{n+1}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{n}{n+1}\]                 \[=\underset{n\to \infty }{\mathop{\lim }}\,\frac{n}{n\left( 1+\frac{1}{n} \right)}=1\]


You need to login to perform this action.
You will be redirected in 3 sec spinner