JAMIA MILLIA ISLAMIA Jamia Millia Islamia Solved Paper-2006

  • question_answer
        If\[\tan \alpha =\frac{m}{m+1}\]and\[\tan \beta =\frac{1}{2m+1},\]then\[\alpha +\beta \]is equal to

    A)  \[\frac{\pi }{3}\]                                             

    B)  \[\frac{\pi }{4}\]

    C)  zero                                     

    D)  \[\frac{\pi }{2}\]

    Correct Answer: B

    Solution :

                    Key idea: \[tan(\alpha +\beta )=\frac{\tan \alpha +\tan \beta }{1-\tan \alpha \tan \beta }\] Given \[\tan \alpha =\frac{m}{m+1},\tan \beta =\frac{1}{2m+1}\]               ...(i) \[\therefore \] \[\tan (\alpha +\beta )=\frac{\tan \alpha +\tan \beta }{1-\tan \alpha \tan \beta }\]                 \[=\frac{\frac{m}{m+1}+\frac{1}{2m+1}}{1-\frac{m}{m+1}.\frac{1}{2m+1}}\]  [using Eq. (i)] \[=\frac{2{{m}^{2}}+m+m+1}{2{{m}^{2}}+m+2m+1-m}=\frac{2{{m}^{2}}+2m+1}{2{{m}^{2}}+2m+1}\] \[\therefore \]  \[\tan (\alpha +\beta )=1\] \[\Rightarrow \]               \[\alpha +\beta ={{\tan }^{-1}}1=\frac{\pi }{4}\] Alternative Method Given, \[\tan \alpha =\frac{m}{m+1},\tan \beta =\frac{1}{2m+1}\] \[\therefore \]\[\alpha ={{\tan }^{-1}}\left( \frac{m}{m+1} \right),\beta ={{\tan }^{-1}}\left( \frac{1}{2m+1} \right)\] \[\alpha +\beta ={{\tan }^{-1}}\left( \frac{m}{m+1} \right)+{{\tan }^{-1}}\left( \frac{1}{2m+1} \right)\] \[={{\tan }^{-1}}\left( \frac{\frac{m}{m+1}+\frac{1}{2m+1}}{1-\frac{m}{m+1}.\frac{1}{2m+1}} \right)\] \[\left[ \because {{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \frac{x+y}{1-xy} \right) \right]\] \[\therefore \]\[\alpha +\beta ={{\tan }^{-1}}\left( \frac{2{{m}^{2}}+2m+1}{2{{m}^{2}}+2m+1} \right)\] \[={{\tan }^{-1}}1=\frac{\pi }{4}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner