JAMIA MILLIA ISLAMIA Jamia Millia Islamia Solved Paper-2006

  • question_answer
        If\[{{2}^{x}}+{{2}^{y}}={{2}^{x+y}},\]then\[\frac{dy}{dx}\]is equal to

    A)  \[\frac{({{2}^{x}}+{{2}^{y}})}{({{2}^{x}}-{{2}^{y}})}\]                      

    B)  \[\frac{({{2}^{x}}+{{2}^{y}})}{(1+{{2}^{x+y}})}\]

    C)  \[{{2}^{x-y}}\left( \frac{{{2}^{y}}-1}{1-{{2}^{x}}} \right)\]             

    D)  \[\frac{{{2}^{x+y}}-{{2}^{x}}}{{{2}^{y}}}\]

    Correct Answer: C

    Solution :

                    Given\[{{2}^{x}}+{{2}^{y}}={{2}^{x+y}}\] On differentiating w.r.t.\[x,\]we get \[{{2}^{x}}{{\log }_{e}}2+{{2}^{y}}{{\log }_{e}}\frac{dy}{dx}\]                                 \[={{2}^{x+y}}{{\log }_{e}}2\left( 1+\frac{dy}{dx} \right)\] \[\Rightarrow \]               \[\frac{dy}{dx}({{2}^{y}}{{\log }_{e}}2-{{2}^{x+y}}{{\log }_{e}}2)\]                                 \[={{2}^{x+y}}{{\log }_{e}}2(1-{{2}^{x}})\] \[\Rightarrow \]               \[\frac{dy}{dx}=[{{2}^{y}}{{\log }_{e}}2(1-{{2}^{x}})]\]                 \[={{2}^{x}}{{\log }_{e}}2[{{2}^{y}}-1]\] \[\Rightarrow \]               \[\frac{dy}{dx}=\frac{{{2}^{x}}}{{{2}^{y}}}\frac{{{2}^{y}}-1}{1-{{2}^{x}}}={{2}^{x-y}}\left( \frac{{{2}^{y}}-1}{1-{{2}^{x}}} \right)\]


You need to login to perform this action.
You will be redirected in 3 sec spinner