JAMIA MILLIA ISLAMIA Jamia Millia Islamia Solved Paper-2007

  • question_answer
        Let\[\alpha ,\beta \]be such that\[\pi <\alpha -\beta <3\pi \]. If \[\sin \alpha +\sin \beta =-\frac{21}{65}\]and \[\cos \alpha +\cos \beta =-\frac{27}{65},\]then the value of\[\cos \frac{\alpha -\beta }{2}\]is

    A)  \[-\frac{3}{\sqrt{130}}\]                              

    B)  \[\frac{3}{\sqrt{130}}\]

    C)  \[\frac{6}{65}\]                               

    D)  \[-\frac{6}{65}\]

    Correct Answer: A

    Solution :

                    Given that, \[\sin \alpha +\sin \beta =-\frac{21}{65}\]                      ...(i) and        \[\cos \alpha +\cos \beta =-\frac{27}{65}\]                   ...(ii) Squaring Eqs. (i) and (ii) and then adding, we get \[{{(\sin \alpha +\sin \beta )}^{2}}+{{(\cos \alpha +\cos \beta )}^{2}}\]                 \[={{\left( -\frac{21}{65} \right)}^{2}}+{{\left( -\frac{27}{65} \right)}^{2}}\] \[{{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +2\sin \alpha \sin \beta +{{\cos }^{2}}\alpha +{{\cos }^{2}}\beta \]                                                 \[+2\cos \alpha \cos \beta =\frac{1170}{4225}\] \[\Rightarrow \] \[2+2(\cos \alpha \cos \beta +\sin \alpha \sin \beta )=\frac{1170}{4225}\] \[\Rightarrow \]               \[2+2\cos (\alpha -\beta )=\frac{1170}{4225}\] \[\Rightarrow \]               \[2[1+\cos (\alpha -\beta )]=\frac{1170}{4225}\] \[\Rightarrow \]               \[2\left[ 2{{\cos }^{2}}\left( \frac{\alpha -\beta }{2} \right) \right]=\frac{1170}{4225}\] \[\Rightarrow \]               \[{{\cos }^{2}}\left( \frac{\alpha -\beta }{2} \right)=\frac{1170}{4\times 4225}\] \[\Rightarrow \]               \[{{\cos }^{2}}\left( \frac{\alpha -\beta }{2} \right)=\frac{9}{130}\] \[\Rightarrow \]               \[\cos \left( \frac{\alpha -\beta }{2} \right)=-\frac{3}{\sqrt{130}}\]                                                 \[(\because \pi <\alpha -\beta <3\pi )\]


You need to login to perform this action.
You will be redirected in 3 sec spinner