JAMIA MILLIA ISLAMIA Jamia Millia Islamia Solved Paper-2008

  • question_answer
        \[\int{\frac{\cos ecx}{{{\cos }^{2}}\left( 1+\log \tan \frac{x}{2} \right)}}dx\]is equal to

    A)  \[{{\sin }^{2}}\left[ 1+\log \tan \frac{x}{2} \right]+c\]

    B)  \[\tan \left[ 1+\log \tan \frac{x}{2} \right]+c\]

    C)  \[{{\sec }^{2}}\left[ 1+\log \tan \frac{x}{2} \right]+c\]

    D)  \[-\tan \left[ 1+\log \tan \frac{x}{2} \right]+c\]

    Correct Answer: B

    Solution :

                    Let\[I=\int{\frac{\cos ecx}{{{\cos }^{2}}\left( 1+\log \tan \frac{x}{2} \right)}}dx\] Put       \[1+log\,\tan \frac{x}{2}=t\] \[\Rightarrow \]               \[\frac{1}{\tan \frac{x}{2}}.{{\sec }^{2}}\frac{x}{2}.\frac{1}{2}dx=dt\] \[\Rightarrow \]               \[\frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}}dx=dt\] \[\Rightarrow \]               \[\cos ecx\,dx=dt\] \[\therefore \]  \[I=\int{\frac{dt}{{{\cos }^{2}}t}}=\int{{{\sec }^{2}}t\,dt}\]                 \[=\tan t+c\]                 \[=\tan \left( 1+\log \tan \frac{x}{2} \right)+c\]


You need to login to perform this action.
You will be redirected in 3 sec spinner