JAMIA MILLIA ISLAMIA Jamia Millia Islamia Solved Paper-2009

  • question_answer
        If\[{{t}_{1}},{{t}_{2}}\]and\[{{t}_{3}}\]are distinct, points\[({{t}_{1}},2a{{t}_{3}}+at_{1}^{3}),\]\[({{t}_{2}},2a{{t}_{2}}+at_{2}^{3})\]and\[({{t}_{3}},2a{{t}_{3}}+at_{3}^{3})\]are collinear, if

    A)  \[{{t}_{1}}{{t}_{2}}{{t}_{3}}=1\]

    B)  \[{{t}_{1}}+{{t}_{2}}+{{t}_{3}}={{t}_{1}}{{t}_{2}}{{t}_{3}}\]

    C)  \[{{t}_{1}}+{{t}_{2}}+{{t}_{3}}=0\]

    D)  \[{{t}_{1}}+{{t}_{2}}+{{t}_{3}}=-1\]

    Correct Answer: C

    Solution :

                    The given points are collinear. If \[\left| \begin{matrix}    {{t}_{1}} & 2{{t}_{1}}+at_{1}^{3} & 1  \\    {{t}_{2}} & 2a{{t}_{2}}+at_{2}^{3} & 1  \\    {{t}_{3}} & 2a{{t}_{3}}+at_{3}^{3} & 1  \\ \end{matrix} \right|=0\] \[\Rightarrow \]               \[a\left| \begin{matrix}    {{t}_{1}} & 2{{t}_{1}}+at_{1}^{3} & 1  \\    {{t}_{2}} & 2{{t}_{2}}+at_{2}^{3} & 1  \\    {{t}_{3}} & 2{{t}_{3}}+at_{3}^{3} & 1  \\ \end{matrix} \right|=0\] Applying\[{{R}_{2}}\to {{R}_{2}}-{{R}_{1}},{{R}_{3}}\to {{R}_{3}}-{{R}_{1}},\]we get \[\left| \begin{matrix}    {{t}_{1}} & 2{{t}_{1}}+t_{1}^{3} & 1  \\    {{t}_{2}}-{{t}_{1}} & 2({{t}_{2}}-{{t}_{1}})+(t_{2}^{3}-t_{1}^{3}) & 0  \\    {{t}_{3}}-{{t}_{1}} & 2({{t}_{3}}-{{t}_{1}})+(t_{3}^{3}+t_{1}^{3}) & 0  \\ \end{matrix} \right|=0\] \[\Rightarrow \]\[({{t}_{2}}-{{t}_{1}})({{t}_{3}}-{{t}_{1}})\left| \begin{matrix}    {{t}_{1}} & 2{{t}_{1}}+t_{1}^{3} & 1  \\    1 & 2+t_{2}^{2}+t_{1}^{2}+{{t}_{1}}{{t}_{2}} & 0  \\    1 & 2+t_{3}^{2}+t_{1}^{2}+{{t}_{3}}{{t}_{1}} & 0  \\ \end{matrix} \right|\]                 \[=0\] \[\Rightarrow \]\[({{t}_{2}}-{{t}_{1}})({{t}_{3}}-{{t}_{1}})({{t}_{3}}-{{t}_{2}})({{t}_{3}}+{{t}_{2}}+{{t}_{1}})=0\] \[\Rightarrow \]\[{{t}_{1}}+{{t}_{2}}+{{t}_{3}}=0\]                            \[[\because {{t}_{1}}\ne {{t}_{2}}\ne {{t}_{3}}]\]


You need to login to perform this action.
You will be redirected in 3 sec spinner