JAMIA MILLIA ISLAMIA Jamia Millia Islamia Solved Paper-2009

  • question_answer
        The value\[1+\sum\limits_{k=0}^{14}{\left\{ \cos \frac{(2k+1)\pi }{15}+i\sin \frac{(2k+1)\pi }{15} \right\}}\]is

    A)  0                                            

    B)  \[-1\]

    C)  1                                            

    D)  \[i\]

    Correct Answer: C

    Solution :

                    \[1+\sum\limits_{k=0}^{14}{\left\{ \cos \frac{(2k+1)\pi }{15}+i\sin \frac{(2k+1)\pi }{15} \right\}}\] \[=1+\sum\limits_{k=0}^{14}{{{e}^{\frac{i(2k+1)\pi }{15}}}}=1+\sum\limits_{k=0}^{14}{{{\alpha }^{2k+1}}},\] where, \[\alpha ={{e}^{\frac{i\pi }{{{e}^{15}}}}}\] \[=1+(\alpha +{{\alpha }^{3}}+{{\alpha }^{5}}+....+{{\alpha }^{29}})\] \[=1+\alpha \left( \frac{1-{{({{\alpha }^{2}})}^{15}}}{1-{{\alpha }^{2}}} \right)\] \[=1+\alpha \left( \frac{1-{{\alpha }^{30}}}{1-{{\alpha }^{2}}} \right)=1+\alpha \left( \frac{1-1}{1-{{\alpha }^{2}}} \right)=1\]                                                 \[[\because {{\alpha }^{30}}={{e}^{i2\pi }}=1]\]


You need to login to perform this action.
You will be redirected in 3 sec spinner