JAMIA MILLIA ISLAMIA Jamia Millia Islamia Solved Paper-2012

  • question_answer
        The locus of a point whose difference of distance from points (3, 0) and\[(-3,0)\]is 4, is

    A)  \[\frac{{{x}^{2}}}{4}-\frac{{{y}^{2}}}{5}=1\]        

    B)  \[\frac{{{x}^{2}}}{5}-\frac{{{y}^{2}}}{4}=1\]

    C)  \[\frac{{{x}^{2}}}{2}-\frac{{{y}^{2}}}{3}=1\]                        

    D)  \[\frac{{{x}^{2}}}{3}-\frac{{{y}^{2}}}{2}=1\]

    Correct Answer: A

    Solution :

                    Let\[P(A)=x\]and\[P(B)=y\] Since, A and B are independent events. Therefore,                 \[P(\overline{A}\cap B)=\frac{2}{15}\] \[\Rightarrow \]               \[P(\overline{A}\cap B)=\frac{2}{15}\] \[\Rightarrow \]               \[P(\overline{A}).P(B)=\frac{2}{15}\] \[\Rightarrow \]               \[[1-P(A)]P(B)=\frac{2}{15}\] \[\Rightarrow \]               \[(1-x)y=\frac{2}{15}\] Also,      \[P(A\cap \overline{B})=\frac{1}{6}\]                 \[P(A).P(\overline{B})=\frac{1}{6}\] \[\Rightarrow \]               \[P(A).[1-P(B)]=\frac{1}{6}\] \[\Rightarrow \]               \[x(1-y)=\frac{1}{6}\] \[\Rightarrow \]               \[x-xy=\frac{1}{6}\] Subtracting Eq. (i) from Eq. (ii), we get                 \[x-y=\frac{1}{6}-\frac{2}{15}\] \[\Rightarrow \]               \[x-y=\frac{1}{30}\] \[\Rightarrow \]               \[x=\frac{1}{30}+y\] Substituting this value of\[x\]in Eq. (i), we get \[y-\left( \frac{1}{30}+y \right)y=\frac{2}{15}\] \[\Rightarrow \]               \[y-\frac{y}{30}-{{y}^{2}}=\frac{2}{15}\] \[\Rightarrow \]               \[{{y}^{2}}-\frac{29}{30}y+\frac{2}{15}=0\] \[\Rightarrow \]               \[30{{y}^{2}}-29y+4=0\] \[\Rightarrow \]               \[(6y-1)(5y-4)=0\] \[\Rightarrow \]               \[y=\frac{1}{6}\]or\[y=\frac{4}{5}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner