JCECE Engineering JCECE Engineering Solved Paper-2002

  • question_answer
    If in \[\Delta ABC\], \[a+\tan A+b\tan B\]\[=(a+b)\tan \frac{1}{2}(A+B)\], then:

    A) \[A=B\]               

    B) \[B=C\]

    C) \[C=A\]               

    D)  \[A=B=C\]

    Correct Answer: A

    Solution :

    Given that                 \[a\tan A+b\tan B=(a+b)\tan \left( \frac{A+B}{2} \right)\] \[\Rightarrow \]               \[a\left[ \tan A-\tan \left( \frac{A+B}{2} \right) \right]\]                 \[=-b\left[ \tan B-\tan \left( \frac{A+B}{2} \right) \right]\] \[\Rightarrow \]               \[a\frac{\left[ \begin{align}   & \sin A\cos \left( \frac{A+B}{2} \right) \\  & -\cos A\sin \left( \frac{A+B}{2} \right) \\ \end{align} \right]}{\cos A\cos \left( \frac{A+B}{2} \right)}\]                 \[=-b\left[ \frac{\begin{align}   & \sin B\cos \left( \frac{A+B}{2} \right) \\  & -\sin \left( \frac{A+B}{2} \right)\cos B \\ \end{align}}{\cos B\cos \left( \frac{A+B}{2} \right)} \right]\] \[\Rightarrow \]\[\frac{k\sin A\sin \left( \frac{A-B}{2} \right)}{\cos A}=\frac{k\sin B\sin \left( \frac{A-B}{2} \right)}{\cos B}\]                 \[\left[ \because \,\,\frac{a}{\sin A}=\frac{b}{\sin B}=k \right]\] \[\Rightarrow \]               \[\sin \left( \frac{A-B}{2} \right)(\tan A-\tan B)=0\] \[\Rightarrow \]               \[\tan A-\tan B=0\Rightarrow A=B\]


You need to login to perform this action.
You will be redirected in 3 sec spinner