JCECE Engineering JCECE Engineering Solved Paper-2002

  • question_answer
    If\[|\overset{\to }{\mathop{\mathbf{A}}}\,+\overset{\to }{\mathop{\mathbf{B}}}\,|=|\overset{\to }{\mathop{\mathbf{A}}}\,-\overset{\to }{\mathop{\mathbf{B}}}\,|\],\[A\] and \[B\] are finite then:

    A)  \[\overset{\to }{\mathop{\mathbf{A}}}\,\] is parallel to \[\overset{\to }{\mathop{\mathbf{B}}}\,\]

    B) \[\overset{\to }{\mathop{\mathbf{A}}}\,\] is anti-parallel to \[\overset{\to }{\mathop{\mathbf{B}}}\,\]

    C)   \[\overset{\to }{\mathop{\mathbf{A}}}\,\] and \[\overset{\to }{\mathop{\mathbf{B}}}\,\] are equal in magnitude

    D)   \[\overset{\to }{\mathop{\mathbf{A}}}\,\] and \[\overset{\to }{\mathop{\mathbf{B}}}\,\] are mutually perpendicular

    Correct Answer: D

    Solution :

    Key Idea: Scalar product of a vector by itself is equal to the square of the magnitude of that vector. Given,                 \[|\overset{\to }{\mathop{\mathbf{A}}}\,+\overset{\to }{\mathop{\mathbf{B}}}\,|=|\overset{\to }{\mathop{\mathbf{A}}}\,-\overset{\to }{\mathop{\mathbf{B}}}\,|\] Squaring both sides, we get                 \[|\overset{\to }{\mathop{\mathbf{A}}}\,+\overset{\to }{\mathop{\mathbf{B}}}\,{{|}^{2}}=|\overset{\to }{\mathop{\mathbf{A}}}\,-\overset{\to }{\mathop{\mathbf{B}}}\,{{|}^{2}}\]                 \[(\overset{\to }{\mathop{\mathbf{A}}}\,+\overset{\to }{\mathop{\mathbf{B}}}\,)\cdot (\overset{\to }{\mathop{\mathbf{A}}}\,+\overset{\to }{\mathop{\mathbf{B}}}\,)=(\overset{\to }{\mathop{\mathbf{A}}}\,-\overset{\to }{\mathop{\mathbf{B}}}\,)\cdot (\overset{\to }{\mathop{\mathbf{A}}}\,-\overset{\to }{\mathop{\mathbf{B}}}\,)\]                 \[\overset{\to }{\mathop{\mathbf{A}}}\,\cdot \overset{\to }{\mathop{\mathbf{A}}}\,+\overset{\to }{\mathop{\mathbf{A}}}\,\cdot \overset{\to }{\mathop{\mathbf{B}}}\,+\overset{\to }{\mathop{\mathbf{B}}}\,\cdot \overset{\to }{\mathop{\mathbf{A}}}\,+\overset{\to }{\mathop{\mathbf{B}}}\,\cdot \overset{\to }{\mathop{\mathbf{B}}}\,\]                 \[=\overset{\to }{\mathop{\mathbf{A}}}\,\cdot \overset{\to }{\mathop{\mathbf{A}}}\,-\overset{\to }{\mathop{\mathbf{A}}}\,\cdot \overset{\to }{\mathop{\mathbf{B}}}\,-\overset{\to }{\mathop{\mathbf{B}}}\,\cdot \overset{\to }{\mathop{\mathbf{A}}}\,+\overset{\to }{\mathop{\mathbf{B}}}\,\cdot \overset{\to }{\mathop{\mathbf{B}}}\,\]                 \[\overset{\to }{\mathop{\mathbf{A}}}\,\cdot \overset{\to }{\mathop{\mathbf{B}}}\,+\overset{\to }{\mathop{\mathbf{B}}}\,\cdot \overset{\to }{\mathop{\mathbf{A}}}\,=-\overset{\to }{\mathop{\mathbf{A}}}\,\cdot \overset{\to }{\mathop{\mathbf{B}}}\,-\overset{\to }{\mathop{\mathbf{B}}}\,\cdot \overset{\to }{\mathop{\mathbf{A}}}\,\] But         \[\overset{\to }{\mathop{\mathbf{B}}}\,\cdot \overset{\to }{\mathop{\mathbf{A}}}\,=\overset{\to }{\mathop{\mathbf{A}}}\,\cdot \overset{\to }{\mathop{\mathbf{B}}}\,\] \[\therefore \]  \[2(\overset{\to }{\mathop{\mathbf{A}}}\,\cdot \overset{\to }{\mathop{\mathbf{B}}}\,)=-2(\overset{\to }{\mathop{\mathbf{A}}}\,\cdot \overset{\to }{\mathop{\mathbf{B}}}\,)\] \[\Rightarrow \]               \[4(\overset{\to }{\mathop{\mathbf{A}}}\,\cdot \overset{\to }{\mathop{\mathbf{B}}}\,)=0\] \[\Rightarrow \]               \[\overset{\to }{\mathop{\mathbf{A}}}\,\cdot \overset{\to }{\mathop{\mathbf{B}}}\,=0\] As the scalar product of \[\overset{\to }{\mathop{\mathbf{A}}}\,\] and \[\overset{\to }{\mathop{\mathbf{B}}}\,\] is zero, \[\overset{\to }{\mathop{\mathbf{A}}}\,\] and \[\overset{\to }{\mathop{\mathbf{B}}}\,\] are mutually perpendicular.


You need to login to perform this action.
You will be redirected in 3 sec spinner