JCECE Engineering JCECE Engineering Solved Paper-2008

  • question_answer
    If \[\alpha ,\,\,\,\beta \] are the roots of the equation \[l{{x}^{2}}+mx+n=0\], then the equation whose roots are \[{{\alpha }^{3}}\beta \] and \[\alpha {{\beta }^{3}}\], is

    A) \[{{l}^{4}}{{x}^{2}}-nl({{m}^{2}}-2nl)x+{{n}^{4}}=0\]

    B) \[{{l}^{4}}{{x}^{2}}-nl({{m}^{2}}-2nl)x+{{n}^{4}}=0\]

    C) \[{{l}^{4}}{{x}^{2}}+nl({{m}^{2}}-2nl)x-{{n}^{4}}=0\]

    D) \[{{l}^{4}}{{x}^{2}}-nl({{m}^{2}}+2nl)x+{{n}^{4}}=0\]

    Correct Answer: A

    Solution :

    Since, \[\alpha ,\,\,\beta \] are the roots of the equation \[l{{x}^{2}}+mx+n=0\] \[\therefore \]  \[\alpha +\beta =-\frac{m}{l},\,\,\,\,\alpha \beta =\frac{n}{l}\] Now,     \[{{\alpha }^{3}}\beta +\alpha {{\beta }^{3}}=\alpha \beta ({{\alpha }^{2}}+{{\beta }^{2}})\]                 \[=\alpha \beta [{{(\alpha +\beta )}^{2}}-2\alpha \beta ]\]                 \[=\frac{n}{l}\left[ {{\left( \frac{-m}{l} \right)}^{2}}-\frac{2n}{l} \right]\]                 \[=\frac{n}{l}\left[ \frac{{{m}^{2}}}{{{l}^{2}}}-\frac{2n}{l} \right]\] and        \[{{\alpha }^{3}}\beta \cdot \alpha {{\beta }^{3}}={{(\alpha \beta )}^{4}}\]                                    \[=\frac{{{n}^{4}}}{{{l}^{4}}}\] \[\therefore \]Required quadratic equation is                 \[{{x}^{2}}-({{\alpha }^{3}}\beta +\alpha {{\beta }^{3}})x+{{\alpha }^{3}}\beta \cdot \alpha {{\beta }^{3}}=0\] \[\Rightarrow \]               \[{{x}^{2}}-\frac{n}{l}\left[ \frac{{{m}^{2}}}{{{l}^{2}}}-\frac{2n}{l} \right]x+\frac{{{n}^{4}}}{{{l}^{4}}}=0\] \[\Rightarrow \]               \[{{l}^{4}}{{x}^{2}}-nl({{m}^{2}}-2nl)x+{{n}^{4}}=0\]


You need to login to perform this action.
You will be redirected in 3 sec spinner