JCECE Engineering JCECE Engineering Solved Paper-2009

  • question_answer
    The points on the curve \[{{x}^{2}}=2y\] which are closest to the point \[(0,\,\,5)\] are

    A) \[(2,\,\,2),\,\,(-2,\,\,2)\]

    B) \[(2\sqrt{2},\,\,4),\,\,(-2\sqrt{2},\,\,4)\]

    C) \[(\sqrt{6},\,\,3),\,\,(-\sqrt{6},\,\,3)\]

    D) \[(2\sqrt{3},\,\,6),\,\,(-2\sqrt{3},\,\,6)\]

    Correct Answer: B

    Solution :

    Let \[(h,\,\,k)\] be the point on the curve                 \[{{x}^{2}}=2y\] \[ie,\]    \[{{h}^{2}}=2k\]                                                ... (i) Let \[D\] be the distance between \[(h,\,\,k)\] and\[(0,\,\,5)\]. \[\therefore \]  \[D=\sqrt{{{h}^{2}}+{{(k-5)}^{2}}}\]                     \[=\sqrt{2k{{(k-5)}^{2}}}\] On differentiating w.r.t.\[k,\] we get                 \[\frac{dD}{dk}=\frac{2+2(k-5)}{\sqrt{2k+{{(k-5)}^{2}}}}\] For minima, put\[\frac{dD}{dk}=0\] \[\Rightarrow \]               \[2+2(k-5)=0\Rightarrow k=4\]  \[\therefore \]From Eq. (i), we get                 \[{{h}^{2}}=2\times 4\] \[\Rightarrow \]               \[h=\pm 2\sqrt{2}\] Hence, closest point is\[(\pm 2\sqrt{2},\,\,4)\].


You need to login to perform this action.
You will be redirected in 3 sec spinner