JCECE Engineering JCECE Engineering Solved Paper-2009

  • question_answer
    The value of \['c'\] Rolle's theorem for \[f(x)={{e}^{x}}\sin x\]in\[[0,\,\,\pi ]\]is given by

    A) \[\frac{\pi }{4}\]                                              

    B) \[\frac{3\pi }{4}\]

    C) \[\frac{5\pi }{6}\]                                            

    D) \[\frac{\pi }{2}\]

    Correct Answer: B

    Solution :

    Given,   \[f(x)={{e}^{x}}\sin x\] Now,     \[f(0)={{i}^{0}}\sin 0=0\] and        \[f(\pi )={{e}^{\pi }}\sin \pi =0\] \[\therefore \]  \[f(0)=f(\pi )\] It is also continuous in the interval \[[0,\,\,\pi ]\] and also differentiable\[(0,\,\,\pi )\]. Now,     \[f(x)={{e}^{x}}\sin x\] \[\Rightarrow \]               \[f'(x)={{e}^{x}}\cos x+{{e}^{x}}\sin x\] Put         \[f'(x)=0\] \[\Rightarrow \]               \[{{e}^{x}}\cos x+{{e}^{x}}\sin x=0\] \[\Rightarrow \]               \[{{e}^{x}}(\cos x+\sin x)=0\] \[\Rightarrow \]               \[\tan x=-1\] \[\Rightarrow \]               \[x=\frac{3\pi }{4}\]        \[\therefore \]=\[c=\frac{3\pi }{4}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner