JCECE Engineering JCECE Engineering Solved Paper-2011

  • question_answer
    The sum of the series \[\frac{1}{2}{{x}^{2}}+\frac{2}{3}{{x}^{3}}+\frac{3}{4}{{x}^{4}}+\frac{4}{5}{{x}^{5}}+...\]is

    A) \[\frac{x}{1+x}+\log (1+x)\]

    B) \[\frac{x}{1-x}+\log (1-x)\]

    C) \[-\frac{x}{1+x}+\log (1+x)\]

    D)  None of these

    Correct Answer: B

    Solution :

    We have,\[\frac{{{x}^{2}}}{2}+\frac{2}{3}{{x}^{3}}+\frac{3}{4}{{x}^{4}}+\frac{4}{5}{{x}^{5}}+...\]                 \[=\sum\limits_{n=1}^{\infty }{\frac{n}{n+1}}\cdot {{x}^{n+1}}=\sum\limits_{n=1}^{\infty }{\frac{n+1-1}{n+1}\cdot {{x}^{n+1}}}\]                 \[=\sum\limits_{n=1}^{\infty }{\left( 1-\frac{1}{n+1} \right)\cdot {{x}^{n+1}}}\]                 \[=\sum\limits_{n=1}^{\infty }{{{x}^{n+1}}-\sum\limits_{n=1}^{\infty }{\frac{{{x}^{n+1}}}{n+1}}}\]                 \[=\frac{{{x}^{2}}}{1-x}+x-\sum\limits_{n=0}^{\infty }{\cdot \frac{{{x}^{n+1}}}{n+1}}\]                 \[=\frac{{{x}^{2}}}{1-x}+x+\log (1-x)\]                 \[=\frac{x}{1-x}+\log (1-x)\]


You need to login to perform this action.
You will be redirected in 3 sec spinner