Solved papers for NEET Chemistry Equilibrium / साम्यावस्था NEET PYQ-Chemical Equilibrium

done NEET PYQ-Chemical Equilibrium Total Questions - 21

  • question_answer1) 
    If \[{{K}_{1}}\] and \[{{K}_{2}}\] are the respective equilibrium constants for the two reactions:  [AIPMT 1998]
    \[Xe{{F}_{6}}(g)+{{H}_{2}}O(g)~XeO{{F}_{4}}(g)+2HF(g)\]
    \[Xe{{O}_{4}}(g)+Xe{{F}_{6}}(g)~XeO{{F}_{4}}(g)+Xe{{O}_{3}}{{F}_{2}}(g)\]
    the equilibrium constant of the reaction
    \[Xe{{O}_{4}}(g)+2HF(g)~Xe{{O}_{3}}{{F}_{2}}(g)+{{H}_{2}}O(g)\]will be :

    A)
           \[{{K}_{2}}/{{({{K}_{2}})}^{2}}\]

    B)
                      \[{{K}_{1}}\,.\,{{K}_{2}}\]     

    C)
     \[{{K}_{1}}/{{K}_{2}}\]

    D)
                      \[{{K}_{2}}/{{K}_{1}}\]

    View Answer play_arrow
  • question_answer2) For a reversible reaction, if the concentrations of the reactants are doubled, the equilibrium constant will be: [AIPMT 2000]

    A)
     one-fourth                    

    B)
     halved

    C)
     doubled                       

    D)
     the same

    View Answer play_arrow
  • question_answer3) 
    For the equilibrium
    \[MgC{{O}_{3}}MgO(s)+C{{O}_{2}}(g)\]
    Which of the following expressions is correct?                                                             [AIPMT 2000]

    A)
     \[{{K}_{p}}={{P}_{C{{O}_{2}}}}\]  

    B)
          \[{{K}_{p}}=\frac{[MgO]\,[C{{O}_{2}}]}{[MgC{{O}_{3}}]}\]

    C)
    \[{{K}_{p}}=\frac{{{P}_{MgO}}+{{P}_{C{{O}_{2}}}}}{{{P}_{MgC{{O}_{3}}}}}\]

    D)
          \[{{K}_{p}}=\frac{{{P}_{MgO}}+{{P}_{C{{O}_{2}}}}}{{{P}_{MgC{{O}_{3}}}}}\]

    View Answer play_arrow
  • question_answer4) 
    Reaction \[Ba{{O}_{2}}(s)~BaO(s)+{{O}_{2}}(g),~\]
    \[\Delta H=+ve\]. In equilibrium condition, Pressure of \[{{O}_{2}}\] depends on:              [AIPMT 2002]

    A)
     increased mass of \[Ba{{O}_{2}}\]                 

    B)
                increased mass of BaO

    C)
    increased temperature of equilibrium.

    D)
          increased mass of \[Ba{{O}_{2}}\] and BaO both

    View Answer play_arrow
  • question_answer5) The reaction quotient (Q) for the reaction \[{{N}_{2}}(g)+3{{H}_{2}}(g)~2N{{H}_{3}}(g)\] is given by \[Q=\frac{{{[N{{H}_{3}}]}^{2}}}{[{{N}_{2}}]\,{{[{{H}_{2}}]}^{3}}}\]. The reaction will proceed towards right side if:                                                                                                                                       [AIPMT 2003]

    A)
     \[Q>{{K}_{c}}\]

    B)
                      \[Q=0\]

    C)
     \[Q={{K}_{c}}\]

    D)
                      \[Q<{{K}_{c}}\]

    View Answer play_arrow
  • question_answer6) 
    The following equilibria are given:                                                 [AIPMT 2003]
    \[\begin{matrix}    {{N}_{2}}+3{{H}_{2}}2N{{H}_{3}} & {{K}_{1}}  \\ \end{matrix}\]
    \[\begin{matrix}    {{N}_{2}}+{{O}_{2}}2NO & {{K}_{2}}  \\ \end{matrix}\]
    \[\begin{matrix}    {{H}_{2}}+\frac{1}{2}{{O}_{2}}{{H}_{2}}O & {{K}_{3}}  \\ \end{matrix}\]   
    The equilibrium constant of the reaction \[2N{{H}_{3}}+\frac{5}{2}{{O}_{2}}\rightleftharpoons 2NO+3{{H}_{2}}O\] in terms of \[{{K}_{1}},\text{ }{{K}_{2}}\] and \[{{K}_{3}}\] is:

    A)
     \[\frac{{{K}_{1}}K_{3}^{2}}{{{K}_{2}}}\]

    B)
                      \[\frac{{{K}_{2}}\,K_{3}^{3}}{{{K}_{1}}}\]

    C)
     \[{{K}_{1}}\,{{K}_{2}}\,{{K}_{3}}\]              

    D)
     \[\frac{{{K}_{1}}\,{{K}_{2}}}{{{K}_{3}}}\]

    View Answer play_arrow
  • question_answer7) In which of the following equilibrium \[{{K}_{c}}\] and \[{{K}_{p}}\] are not equal?                [AIPMT (S) 2010]

    A)
     \[2NO(g){{N}_{2}}(g)+{{O}_{2}}(g)\]

    B)
     \[S{{O}_{2}}(g)+N{{O}_{2}}(g)S{{O}_{3}}(g)+NO(g)\]

    C)
     \[{{H}_{2}}(g)+{{I}_{2}}(g)2HI(g)\]

    D)
     \[2C(s)+{{O}_{2}}(g)2C{{O}_{2}}(g)\]

    View Answer play_arrow
  • question_answer8)  
    The reaction,                                                                                                                 [AIPMT (M) 2010]
    \[2A(g)+B(g)3C(g)+D(g)\]
    is begun with the concentrations of A and B both at an initial value of 1.00 M. When equilibrium is reached, the concentration of D is measured and found to be 0.25 M. The value for the equilibrium constant for this reaction is given by the expression

    A)
     \[[{{(0.75)}^{3}}(0.25)]\div [{{(1.00)}^{2}}(1.00)]\]

    B)
     \[[{{(0.75)}^{3}}(0.25)]\div [{{(0.50)}^{2}}(0.75)]\]

    C)
     \[[{{(0.75)}^{3}}(0.25)]\div [{{(0.50)}^{2}}(0.25)]\]

    D)
     \[[{{(0.75)}^{3}}(0.25)]\div [{{(0.75)}^{2}}(0.25)]\]

    View Answer play_arrow
  • question_answer9)   The value of \[\Delta H\] for the reaction\[{{X}_{2}}(g)+4{{Y}_{2}}(g)2X{{Y}_{4}}(g)\] is less than zero. Formation of \[X{{Y}_{4}}(g)\] will be favored at                                                                     [AIPMT (S) 2011]

    A)
     low pressure and low temperature

    B)
     high temperature and low pressure

    C)
     high pressure and low temperature

    D)
     high temperature and high pressure

    View Answer play_arrow
  • question_answer10)              For the reaction \[{{N}_{2}}(g)+{{O}_{2}}(g)2\] \[NO(g),\] the equilibrium constant is \[{{K}_{1}}\]. The equilibrium constant is \[{{K}_{2}}\] for   the   reaction \[2NO(g)+{{O}_{2}}(g)2N{{O}_{2}}(g)\] What is K for the reaction \[N{{O}_{2}}(g)\frac{1}{2}{{N}_{2}}(g)+{{O}_{2}}(g)\]?                                 [AIPMT (S) 2011]

    A)
     \[1/(4{{K}_{1}}{{K}_{2}})\]    

    B)
          \[{{[1/{{K}_{1}}{{K}_{2}}]}^{1/2}}\]

    C)
     \[1/({{K}_{1}}{{K}_{2}})\]     

    D)
          \[1/(2{{K}_{1}}{{K}_{2}})\]

    View Answer play_arrow
  • question_answer11)  Given that the equilibrium constant for the reaction, \[2S{{O}_{2}}(g)+{{O}_{2}}(g)2S{{O}_{3}}(g)\] has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature?\[S{{O}_{3}}(g)S{{O}_{2}}(g)+\frac{1}{2}{{O}_{2}}(g)\].                                [AIPMT (M) 2012]

    A)
     \[1.8\times {{10}^{-3}}\]        

    B)
          \[3.6\times {{10}^{-3}}\]        

    C)
     \[6.0\times {{10}^{-2}}\]        

    D)
          \[1.3\times {{10}^{-5}}\]

    View Answer play_arrow
  • question_answer12) 
    Given the reaction between two gases represented by \[{{A}_{2}}\] and \[{{B}_{2}}\] to give the compound \[AB.(g).\]\[{{A}_{2}}(g)+{{B}_{2}}(g)2AB(g)\]
    At equilibrium, the concentration of \[{{A}_{2}}=3.0\times {{10}^{-3}}M\] of \[{{B}_{2}}=4.2\times {{10}^{-3}}M\] of \[AB=2.8\times {{10}^{-3}}M\]. If the reaction takes place in a sealed vessel at \[527{}^\circ C,\] then the value of K, will be                                                                                                 [AIPMT (M) 2012]

    A)
     2.0              

    B)
     1.9                  

    C)
     0.62                

    D)
          4.5

    View Answer play_arrow
  • question_answer13) For the reversible reaction,                        \[{{N}_{2}}(g)+3{{H}_{2}}(g)\rightleftharpoons 2N{{H}_{3}}(g)+Heat\] the equilibrium shifts in forward direction                                                                                 [AIPMT 2014]

    A)
     by increasing the concentration of \[N{{H}_{3}}(g)\]

    B)
     by decreasing the pressure

    C)
     by decreasing the concentrations of \[{{N}_{2}}(g)\] and \[{{H}_{2}}(g)\]

    D)
     by increasing  pressure  and  decreasing temperature

    View Answer play_arrow
  • question_answer14) For a given exothermic reaction, \[{{K}_{p}}\] and \[K_{p}^{'}\] are the equilibrium constants at temperatures  \[{{T}_{1}}\] and\[{{T}_{2}},\] respectively. Assuming that heat of reaction is constant in 'temperature range between \[{{T}_{1}}\] and\[{{T}_{2}},\] it is readily observed that                                                          [AIPMT 2014]

    A)

    B)
     \[{{K}_{p}}<K_{p}^{'}\]       

    C)
     \[{{K}_{p}}=K_{p}^{'}\]       

    D)
          \[{{K}_{p}}=\frac{1}{K_{p}^{'}}\]

    View Answer play_arrow
  • question_answer15) If the value of an equilibrium constant for a particular reaction is \[1.6\times {{10}^{12}},\] then at equilibrium the system will contain                                                                                                                          [NEET 2015 ]

    A)
     all reactants     

    B)
          mostly reactants

    C)
     mostly products

    D)
          similar amounts of reactants and products

    View Answer play_arrow
  • question_answer16) If the equilibrium constant for \[{{N}_{2}}(g)+{{O}_{2}}(g)\rightleftharpoons 2NO(g)\] is K, the equilibrium constant for                                                                                                                                                     [NEET 2015 (Re)] \[\frac{1}{2}{{N}_{2}}(g)+\frac{1}{2}{{O}_{2}}(g)NO(g)\] will the

    A)
     \[{{K}^{1/2}}\]            

    B)
                      \[\frac{1}{2}K\]

    C)
     K                                

    D)
     \[{{K}_{2}}\]

    View Answer play_arrow
  • question_answer17) 
    The equilibrium constants of the following are.                                                             [NEET-2017]
    \[{{N}_{2}}+3{{H}_{2}}\rightleftharpoons 2N{{H}_{3}}\,{{K}_{4}}\]
    \[{{N}_{2}}+{{O}_{2}}\rightleftharpoons 2NO\,{{K}_{2}}\]
    \[{{H}_{2}}+\frac{1}{2}{{O}_{2}}\xrightarrow{{}}{{H}_{2}}O\,{{K}_{3}}\]
    The equilibrium constant (K) of the reaction \[2N{{H}_{3}}+\frac{5}{2}{{O}_{2}}\xrightarrow{k}2NO+3{{H}_{2}}O,\] will be

    A)
     \[K_{2}^{3}{{K}_{3}}/{{K}_{1}}\]    

    B)
          \[{{K}_{1}}K_{3}^{3}/{{K}_{2}}\]

    C)
     \[{{K}_{2}}K_{3}^{3}/{{K}_{1}}\]    

    D)
          \[{{K}_{2}}{{K}_{3}}/{{K}_{1}}\]

    View Answer play_arrow
  • question_answer18) A 20 litre container at 400 K contains \[C{{O}_{2}}(g)\] pressure 0.4 atm and an excess of SrO (neglect the volume of solid SrO). The volume of the containers is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of \[C{{O}_{2}}\] attains its maximum value, will be  (Given that: \[SrC{{O}_{3}}(s)=SrO(s)+C{{O}_{2}}(g).\]\[{{K}_{p}}=1.6\,atm)\]                                                [NEET-2017]

    A)
     2 litre

    B)
                      5 litre

    C)
     10 litre

    D)
          4 litre

    View Answer play_arrow
  • question_answer19) Which one of the following conditions will favour maximum formation of the product in the react\[{{A}_{2}}(g)+{{B}_{2}}(g){{X}_{2}}(g){{\Delta }_{r}}H=-X\,\,kJ?\]    [NEET - 2018]

    A)
     High temperature and high pressure

    B)
     Low temperature and low pressure

    C)
     Low temperature and high pressure

    D)
     High temperature and low pressure

    View Answer play_arrow
  • question_answer20) 
    A mixture of \[{{N}_{2}}\] and Ar gases in a cylinder contains 7 g of \[{{N}_{2}}\] and 8 g of Ar. If the total pressure of the mixture of the gases in the cylinder is 27 bar, the partial pressure of \[{{N}_{2}}\] is:
    [Use atomic masses \[(in\text{ }g\text{ }mo{{l}^{1}}):N=14,\,\,Ar=40]\]                                   [NEET 2020]

    A)
     12 bar

    B)
                      15 bar

    C)
     18 bar

    D)
          9 bar

    View Answer play_arrow
  • question_answer21) 
    Hydrolysis of sucrose is given by the following reaction.                                                     [NEET 2020]
    \[\text{Sucrose+}{{\text{H}}_{\text{2}}}\text{O}\text{Glucose+Fructose}\]
    If the equilibrium constant \[({{K}_{C}})\] is \[2\times {{10}^{13}}\] at 300 K, the value of \[{{\Delta }_{r}}{{G}^{O-}}\] at the same temperature will be:

    A)
     \[8.314\text{ }J\text{ }mo{{l}^{1}}{{K}^{1}}\times 300\text{ }K\times ln\,\text{(}2\times {{10}^{13}})\]

    B)
     \[8.314\text{ }J\text{ }mo{{l}^{1}}{{K}^{1}}\times 300\text{ }K\times ln\,(3\times {{10}^{13}})\]

    C)
     \[8.314\text{ }J\text{ }mo{{l}^{1}}{{K}^{1}}\times 300\text{ }K\times ln\text{ (}4\times {{10}^{13}})\]

    D)
     \[8.314\text{ }J\text{ }mo{{l}^{1}}{{K}^{1}}\times 300\text{ }K\times ln\,(2\times {{10}^{13}})\]

    View Answer play_arrow

Study Package

NEET PYQ-Chemical Equilibrium
 

   


You need to login to perform this action.
You will be redirected in 3 sec spinner