JEE Main & Advanced JEE Main Online Paper (Held On 15 April 2018) Slot-I

  • question_answer Let \[y=y(x)\] be the solution of the differential equation \[\frac{dy}{dx}+2y=f(x)\], where \[f(x)=\left\{ \begin{matrix}    1, & x\in [0,1]  \\    0, & otherwise  \\ \end{matrix} \right.\] If \[\text{y(0)=0,then}\,\,\,\text{y}\,\,\left( \frac{\text{3}}{\text{2}} \right)\text{is}\]                          [JEE Online 15-04-2018]

    A) \[\frac{{{e}^{2}}-1}{2{{e}^{3}}}\]       

    B) \[\frac{{{e}^{2}}-1}{{{e}^{3}}}\]         

    C) \[\frac{1}{2e}\]                                  

    D) \[\frac{{{e}^{2}}+1}{2{{e}^{4}}}\]     

    Correct Answer: A

    Solution :

    Solving the initial value problem, we get \[y=\frac{1}{2}-\frac{1}{2}{{e}^{-2x}}\]when \[x\in [0,1]\]. We can check this by substituting this in the differential equation and checking the initial value. So,\[y(1)=\frac{1-{{e}^{-2}}}{2}=\frac{{{e}^{2}}-1}{2{{e}^{2}}}.......(1)\] Now, for\[x\in (1,\infty ),\] we have \[{{e}^{2x}}y={{c}_{2}}\](solving the differential equation separately for this interval) Using the condition found above in (1) , we have  \[{{c}_{2}}=\frac{{{e}^{2}}-1}{2}\]. That gives \[y=\frac{{{e}^{2}}-1}{2}{{e}^{-2x}}\]for \[x\in (1,\infty )\] So, for \[x=\frac{3}{2}\], we get \[y=\frac{{{e}^{2}}-1}{2{{e}^{3}}}\]. So, the correct answer is option A.

adversite



LIMITED OFFER HURRY UP! OFFER AVAILABLE ON ALL MATERIAL TILL TODAY ONLY!

You need to login to perform this action.
You will be redirected in 3 sec spinner

Free
Videos