JEE Main & Advanced JEE Main Paper (Held On 16 April 2018)

  • question_answer
    The least positive integer n for which \[{{\left( \frac{1+i\sqrt{3}}{1-i\sqrt{3}} \right)}^{n}}=1,\]is?  [JEE Main 16-4-2018]

    A)  2                                

    B)  6

    C)  5                                

    D)  3

    Correct Answer: D

    Solution :

     First rationalize the number \[\left( \frac{1+i\sqrt{3}}{1-i\sqrt{3}} \right)\times \left( \frac{1+i\sqrt{3}}{1+i\sqrt{3}} \right)=\left( \frac{-2+i2\sqrt{3}}{4} \right)=\left( \frac{1-i\sqrt{3}}{-2} \right)\]                                                                                        ?(1) \[\left( \frac{1+i\sqrt{3}}{1-i\sqrt{3}} \right)\times \left( \frac{1-i\sqrt{3}}{1-i\sqrt{3}} \right)=\left( \frac{4}{-2-i2\sqrt{3}} \right)=\left( \frac{-2}{1+i\sqrt{3}} \right)\] ?.(2) Using (1)and (2) \[{{\left( \frac{1+i\sqrt{3}}{1-i\sqrt{3}} \right)}^{3}}=\left( \frac{1+i\sqrt{3}}{1-i\sqrt{3}} \right)\times \left( \frac{1+i\sqrt{3}}{1-i\sqrt{3}} \right)\times \left( \frac{1+i\sqrt{3}}{1-i\sqrt{3}} \right)\] \[=\left( \frac{1+i\sqrt{3}}{1-i\sqrt{3}} \right)\times \left( \frac{-2}{1+i\sqrt{3}} \right)\times \left( \frac{1-i\sqrt{3}}{-2} \right)=1\] Therefore correct Answer is 3 so correct option is D            


You need to login to perform this action.
You will be redirected in 3 sec spinner