JEE Main & Advanced JEE Main Paper (Held on 09-4-2019 Afternoon)

  • question_answer
    The value of the integral \[\int\limits_{0}^{1}{x}{{\cos }^{-1}}(1-{{x}^{2}}+{{x}^{4}})dx\]is :-                         [JEE Main 9-4-2019 Afternoon]

    A) \[\frac{\pi }{4}-\frac{1}{2}{{\log }_{e}}2\]

    B) \[\frac{\pi }{2}-{{\log }_{e}}2\]

    C) \[\frac{\pi }{2}-\frac{1}{2}{{\log }_{e}}2\]            

    D) \[\frac{\pi }{4}-{{\log }_{e}}2\]

    Correct Answer: A

    Solution :

    \[I=\int\limits_{0}^{1}{x}\tan \left( \frac{1}{1+{{x}^{2}}({{x}^{2}}-1)} \right)dx\]           \[I=\int\limits_{0}^{1}{x}\left( {{\tan }^{-1}}{{x}^{2}}-{{\tan }^{-1}}({{x}^{2}}-1) \right)dx\]           \[{{x}^{2}}=t\Rightarrow 2xdx=dt\]           \[I=\frac{1}{2}\int\limits_{0}^{1}{\left( {{\tan }^{-1}}t-{{\tan }^{-1}}(t-1) \right)dx}\]           \[=\frac{1}{2}\int\limits_{0}^{1}{{{\tan }^{-1}}t\,dt-\frac{1}{2}\int\limits_{0}^{1}{{{\tan }^{-1}}}(t-1)}dt\]           \[=\frac{1}{2}\int\limits_{0}^{1}{{{\tan }^{-1}}t\,dt-\frac{1}{2}\int\limits_{0}^{1}{{{\tan }^{-1}}}}dt=\int\limits_{0}^{1}{{{\tan }^{-1}}}dt\]           \[{{\tan }^{-1}}t=\theta \Rightarrow t=\tan \theta \]           \[dt={{\sec }^{2}}\theta d\theta \]           \[\int\limits_{0}^{\pi /4}{\theta .{{\sec }^{2}}}\theta d\theta \]           \[I=(\theta .tan\theta )|_{0}^{\pi /4}-\int\limits_{0}^{\pi /4}{\tan \theta }d\theta \]           \[\left. =\left( \frac{\pi }{4}-0 \right)-\ln (sec\theta ) \right|_{0}^{\pi /4}\]           \[=\left( \frac{\pi }{4} \right)-\left( \ell n\sqrt{2}-0 \right)\]           \[=\frac{\pi }{4}-\frac{1}{2}\ell n2\]                  


You need to login to perform this action.
You will be redirected in 3 sec spinner