JEE Main & Advanced JEE Main Paper (Held On 11 April 2014)

  • question_answer
    If the general solution of the differential equation\[y'=\frac{y}{x}+\Phi \left( \frac{x}{y} \right),\]for some function \[\Phi ,\] is given by \[\ln |cx|=x,\]where c is an arbitrary constant, then \[\Phi (2)\]is equal to:   [JEE Main Online Paper ( Held On 11 Apirl  2014 )

    A) 4                                             

    B) \[\frac{1}{4}\]

    C) -4                                           

    D) \[-\frac{1}{4}\]

    Correct Answer: D

    Solution :

    Given\[\frac{dy}{dx}=\frac{y}{x}+\phi \left( \frac{y}{x} \right)\]                                ?(1) Let\[\left( \frac{y}{x} \right)=v\]so that \[y=xv\]or\[\frac{dy}{dx}=x\frac{dv}{dx}+v\]?(2) from (1) & (2),\[x\frac{dv}{dx}+\cancel{v}=\cancel{v}+\phi \left( \frac{1}{v} \right)\] or,\[\frac{dy}{\phi \left( \frac{1}{v} \right)}=\frac{dx}{x}\] Integrating both sides, we get \[\int_{{}}^{{}}{\frac{dx}{x}=\int_{{}}^{{}}{\frac{dv}{\phi \left( \frac{1}{v} \right)}\Rightarrow \ln x+c=\int_{{}}^{{}}{\frac{dv}{\phi \left( \frac{1}{v} \right)}}}}\](where c being constant of integration) But, given \[y=\frac{x}{\ln |cx|}\]is the general solution so that\[\frac{x}{y}=\frac{1}{v}=\ln |cx|=\int_{{}}^{{}}{\frac{dv}{\phi \left( \frac{1}{v} \right)}}\] Differentiating w.r.t v both sides, we get \[\phi \left( \frac{1}{v} \right)=\frac{-1}{{{v}^{2}}}\Rightarrow \phi \left( \frac{x}{y} \right)=-\frac{{{y}^{2}}}{{{x}^{2}}}\] when\[\frac{x}{y}=2\]i.e.\[\phi (2)=-{{\left( \frac{y}{x} \right)}^{2}}=-{{\left( \frac{1}{2} \right)}^{2}}=\left( \frac{-1}{4} \right)\]


You need to login to perform this action.
You will be redirected in 3 sec spinner