JEE Main & Advanced JEE Main Paper (Held On 19 May 2012)

  • question_answer
    If \[{{A}^{T}}\]denotes the transpose of the matrix\[A=\left[ \begin{matrix}    0 & 0 & a  \\    0 & b & c  \\    d & e & f  \\ \end{matrix} \right],\]where a, b, c, d, e and f are integers such that \[abd\ne 0,\] then the number of such matrices for which \[{{A}^{-1}}={{A}^{T}}\]is     JEE Main  Online Paper (Held On 19  May  2012)

    A) 2(3!)                                     

    B)                        3(2!)

    C)                        23         

    D)                        32

    Correct Answer: C

    Solution :

                    \[A=\left[ \begin{matrix}    0 & 0 & a  \\    0 & b & c  \\    d & e & f  \\ \end{matrix} \right],|A|=-abd\ne 0\] \[{{c}_{11}}=+(bf-ce),{{c}_{12}}=-(-cd)=cd,\] \[{{c}_{13}}=+(-bd)=-bd\] \[{{c}_{21}}=-(-ea)=ae,{{c}_{22}}=+(-ad)=-ad,\] \[{{c}_{23}}=-(0)=0\] \[{{c}_{31}}=+(-ab)=-ab,{{c}_{32}}\] \[=-(0)=0,{{c}_{33}}=0\] \[AdjA=\left[ \begin{matrix}    (bf-ce) & ae & -ab  \\    cd & -ad & 0  \\    -bd & 0 & 0  \\ \end{matrix} \right]\] \[{{A}^{-1}}=\frac{1}{|A|}(adjA)=\frac{1}{abd}\left[ \begin{matrix}    bf-ce & ae & -ab  \\    cd & -ad & 0  \\    -bd & 0 & 0  \\ \end{matrix} \right]\] \[{{A}^{T}}\left[ \begin{matrix}    0 & 0 & d  \\    0 & b & e  \\    a & c & f  \\ \end{matrix} \right]\]Now\[{{A}^{-1}}={{A}^{T}}\] \[\Rightarrow \]\[\frac{1}{-abd}\left[ \begin{matrix}    bf-ce & ae & -ab  \\    cd & -ad & 0  \\    -bd & 0 & 0  \\ \end{matrix} \right]\]\[=\left[ \begin{matrix}    0 & 0 & d  \\    0 & b & e  \\    a & c & f  \\ \end{matrix} \right]\] \[\Rightarrow \]\[=\left[ \begin{matrix}    bf-ce & ae & -ab  \\    cd & b-ad & 0  \\    -bd & 0 & 0  \\ \end{matrix} \right]\] \[=\left[ \begin{matrix}    0 & 0 & -ab{{d}^{2}}  \\    0 & -a{{b}^{2}}d & -abde  \\    -{{a}^{2}}bd & -abcd & -abdf  \\ \end{matrix} \right]\] \[\therefore \]\[bf-ce=ae=cd=0\]                                            ?(i) \[ab{{d}^{2}}=ab,a{{b}^{2}}d=ad,{{a}^{2}}bd=bd\]           ?(ii) \[abde=abcd=abdf=0\]                 ?(iii) From (ii), \[(ab{{d}^{2}}).(a{{b}^{2}}d).({{a}^{2}}bd)=ab.ad.bd\] \[\Rightarrow \]\[{{(abd)}^{4}}-{{(abd)}^{2}}=0\] \[\Rightarrow \]\[{{(abd)}^{4}}[{{(abd)}^{2}}=1]=0\] \[\because \]\[abd\ne 0,\therefore \]                                   ?(iv) From (iii) and (iv)m\[\]  ?(v) From (i) and (v), \[bf=ae=cd=0\]               ?(vi) From (iv), (v) and (vi), it is clear that a, b, d can be any non-zero integer such that \[abd=\pm 1\] But it is only possible, if\[a=b=d=\pm 1\] Hence, there are 2 choices for each a, b and d. there fore, there are \[2\times 2\times 2\]choices for \[a,b\] and d. Hence number of required matrices \[=2\times 2\times 2={{(2)}^{3}}\]                   


You need to login to perform this action.
You will be redirected in 3 sec spinner