Manipal Engineering Manipal Engineering Solved Paper-2010

  • question_answer
    If\[e\]is the eccentricity of the hyperbola\[\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1\]and\[\theta \]is the angle between the asymptotes, then\[\cos \left( \frac{\theta }{2} \right)\]is equal to

    A) \[\frac{1}{e}\]                                  

    B) \[\frac{-1}{e}\]

    C) \[e\]                     

    D)        \[\frac{2}{e}\]

    Correct Answer: A

    Solution :

    The equations of the asymptotes of the hyperbola                 \[\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1\]are\[y=\pm \frac{b}{a}ie\],                 \[y=\frac{b}{a}\]and\[y=\frac{-b}{a}x\] If\[\theta \]is the angle between the two asymptotes, then,\[\tan \theta =\frac{\frac{b}{a}+\frac{b}{a}}{1-\frac{b}{a}\cdot \frac{b}{a}}=\frac{2b}{a}\times \frac{{{a}^{2}}}{{{a}^{2}}-{{b}^{2}}}=\frac{2ab}{{{a}^{2}}-{{b}^{2}}}\] From this, we get\[\cos \theta =\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}\] \[\Rightarrow \]               \[2{{\cos }^{2}}\frac{\theta }{2}-1=\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}\] \[\Rightarrow \]               \[2{{\cos }^{2}}\frac{\theta }{2}=1+\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}\] \[\Rightarrow \]               \[2{{\cos }^{2}}\frac{\theta }{2}=\frac{2{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}}\] \[\Rightarrow \]               \[{{\cos }^{2}}\frac{\theta }{2}=\frac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}}\] But\[{{b}^{2}}={{a}^{2}}({{e}^{2}}-1)={{a}^{2}}{{e}^{2}}-{{a}^{2}}\Rightarrow {{a}^{2}}+{{b}^{2}}={{a}^{2}}{{e}^{2}}\] \[\therefore \]  \[{{\cos }^{2}}\left( \frac{\theta }{2} \right)=\frac{{{a}^{2}}}{{{a}^{2}}{{e}^{2}}}=\frac{1}{{{e}^{2}}}\] \[\Rightarrow \]               \[\cos \left( \frac{\theta }{2} \right)=\frac{1}{e}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner