Manipal Engineering Manipal Engineering Solved Paper-2012

  • question_answer
    If\[y(t)\]is a solution of\[(1+t)\frac{dy}{dt}-ty=1\]and\[y(0)=-1\], then\[y(1)\]equal to

    A) \[-\frac{1}{2}\]                                 

    B) \[e+\frac{1}{2}\]

    C) \[e-\frac{1}{2}\]              

    D)        \[\frac{1}{2}\]

    Correct Answer: A

    Solution :

    Here,\[\frac{dy}{dt}-\left( \frac{t}{1+t} \right)y=\frac{1}{1+t}\]and\[y(0)=-1\] which represents linear differential equation of first order.                 \[IF={{e}^{-\int{\left( \frac{t}{1+t} \right)dt}}}={{e}^{-\int{\frac{(t+1-1)}{1+t}dt}}}\]                       \[={{e}^{-t+\log (1+t)}}\]                       \[={{e}^{-t}}(1+t)\] \[\therefore \]Required solutions is           \[y(IF)=[\int{Q\cdot (IF)dt]}+C\]   \[y{{e}^{-1}}(1+t)=\int{\frac{1}{1+t}{{e}^{-1}}(1+t)dt+C}\]                      \[=\int{{{e}^{-t}}dt+C=-{{e}^{-t}}+C}\] At             \[t=0,\,\,y=-1\] \[\therefore \]  \[-1(1+0)=-{{e}^{0}}+C\] \[\Rightarrow \]                           \[C=0\] \[\therefore \]        \[y{{e}^{-t}}(1+t)=-{{e}^{-t}}\] At                           \[t=1\]              \[y{{e}^{-1}}(1+1)=-{{e}^{-1}}\] \[\Rightarrow \]                            \[y=-\frac{1}{2}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner