Manipal Engineering Manipal Engineering Solved Paper-2012

  • question_answer
    If\[f(x)=\left\{ \begin{matrix}    \frac{|x+2|}{{{\tan }^{-1}}(x+2)}, & x\ne -2  \\    2, & x=-2  \\ \end{matrix} \right.\], then\[f(x)\]is

    A)  continuous at\[x=-2\]

    B)  not continuous at\[x=-2\]

    C)  differentiable at\[x=-2\]

    D)  continuous but not derivable at\[x=-2\].

    Correct Answer: B

    Solution :

    \[f(x)=\left\{ \begin{matrix}    \frac{|x+2|}{{{\tan }^{-1}}(x+2)}, & x\ne -2  \\    2, & x=-2  \\ \end{matrix} \right.\] \[\therefore \]  \[\underset{x\to -{{2}^{-}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,f(-2-h)\]                 \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{|-2-h+2|}{{{\tan }^{-1}}(-2-h+2)}\]                 \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{-h}{{{\tan }^{-1}}h}=-1\] and        \[\underset{x\to -{{2}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,f(-2+h)\]                 \[=\underset{h\to 0}{\mathop{\lim }}\,\left[ \frac{|-2+h+2|}{{{\tan }^{-1}}(-2+h+2)} \right]\]                 \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{h}{{{\tan }^{-1}}h}=1\] \[\because \]     \[\underset{x\to -{{2}^{-}}}{\mathop{\lim }}\,f(x)\ne \underset{x\to -{{2}^{+}}}{\mathop{\lim }}\,f(x)\] So,\[f(x)\]is not continuous as well as not differentiable at\[x=-2\].


You need to login to perform this action.
You will be redirected in 3 sec spinner