Manipal Engineering Manipal Engineering Solved Paper-2013

  • question_answer
    \[\int{\sqrt{1+\cos ecx}\,\,dx}\]is equal to

    A) \[\pm {{\sin }^{-1}}(\tan x-\sec x)+c\]

    B) \[2{{\sin }^{-1}}(\cos x)+c\]

    C) \[{{\sin }^{-1}}\left( \cos \frac{x}{2}-\sin \frac{x}{2} \right)+c\]

    D) \[\pm 2{{\sin }^{-1}}\left( \sin \frac{x}{2}-\cos \frac{x}{2} \right)+c\]

    Correct Answer: D

    Solution :

    Let\[I=\int{\sqrt{1+\cos ecx}dx=\int{\frac{\sqrt{1+\sin x}}{\sqrt{\sin x}}dx}}\] \[=\int{\pm \frac{\sin \frac{x}{2}+\cos \frac{x}{2}}{\sqrt{2\sin \frac{x}{2}\cdot \cos \frac{x}{2}}}}\cdot dx\] \[=\pm \int{\frac{\sin \frac{x}{2}+\cos \frac{x}{2}}{\sqrt{1-\left( \sin \frac{x}{2}-\cos \frac{x}{2} \right)}}}\cdot dx\] Put,        \[\sin \frac{x}{2}-\cos \frac{x}{2}=1\] \[\Rightarrow \]               \[\left( \cos \frac{x}{2}+\sin \frac{x}{2} \right)dx=2dt\] \[\therefore \]  \[I=\pm \int{\frac{2dt}{\sqrt{1-{{t}^{2}}}}=\pm 2{{\sin }^{-1}}t+C}\] \[=\pm 2{{\sin }^{-1}}\left( \sin \frac{x}{2}-\cos \frac{x}{2} \right)+C\]


You need to login to perform this action.
You will be redirected in 3 sec spinner