Manipal Engineering Manipal Engineering Solved Paper-2013

  • question_answer
    The slope of the tangent at\[(x,\,\,y)\]to a curve passing through\[\left( 1,\,\,\frac{\pi }{4} \right)\]is given by\[\frac{y}{x}-{{\cos }^{2}}\left( \frac{y}{x} \right)\]the equation of the curve is

    A) \[y={{\tan }^{-1}}\left( \log \frac{c}{x} \right)\] 

    B) \[y=x{{\tan }^{-1}}\left( \log \frac{x}{c} \right)\]

    C) \[y=x{{\tan }^{-1}}\left( \log \frac{c}{x} \right)\]

    D)         None of these

    Correct Answer: C

    Solution :

    We have,\[\frac{dy}{dx}=\frac{y}{x}-{{\cos }^{2}}\left( \frac{y}{x} \right)\] Putting\[y=vx\], so that                 \[\frac{dy}{dx}=v+x\frac{dv}{dx}\], \[\therefore \]  \[v+x\frac{dv}{dx}=v-{{\cos }^{2}}v\] \[\Rightarrow \]               \[\frac{dv}{{{\cos }^{2}}v}=-\frac{dx}{x}\] \[\Rightarrow \]               \[{{\sec }^{2}}v\,\,dv=-\frac{1}{x}dx\] on integration, we get                 \[\tan v=-\log x+\log c\] \[\Rightarrow \]               \[\tan \left( \frac{y}{x} \right)=-\log x+\log c\] this passes through\[(1,\,\,\pi /4)\], therefore,                 \[1=\log c\] So;          \[\tan \left( \frac{y}{x} \right)=-\log x+1\] \[\Rightarrow \]               \[\tan \left( \frac{y}{x} \right)=-\log x+\log c\] \[\Rightarrow \]               \[y=x{{\tan }^{-1}}\left( \log \frac{c}{x} \right)\].


You need to login to perform this action.
You will be redirected in 3 sec spinner