NEET Physics Two Dimensional Motion NEET PYQ-Two Dimensional Relative Motion

  • question_answer
    For angles of projection of a projectile at angles \[({{45}^{o}}-\theta )\] and \[({{45}^{o}}+\theta )\] the horizontal ranges described by the projectile are in the ratio of: [AIPMT (S) 2006]

    A) 1 : 1

    B) 2 : 3     

    C) 1 : 2

    D) 2 : 1

    Correct Answer: A

    Solution :

    Key Idea: For complementary angles of projection, their horizontal ranges will be some. We know that, horizontal ranges for complementary angles of projection will be same.
                The projectiles are projected at angles \[({{45}^{o}}-\theta )\]and \[({{45}^{o}}+\theta )\] which are complementary to each other i.e., two angles add up to give \[{{90}^{o}}\]. Hence, horizontal ranges will be equal. Thus, the required ratio is 1 : 1.
                Alternative: Horizontal range of projectile = Horizontal component of velocity \[({{u}_{x}})\times \] Time of flight \[(T)\]
                            \[R=u\,\,\cos \,\,\alpha \times \frac{2u\,\,\sin \alpha }{g}\]
                or         \[R=\frac{{{u}^{2}}\,\,\sin 2\alpha }{g}\]
                For        \[\alpha =({{45}^{o}}+\theta ),\,{{R}_{2}}=\frac{{{u}^{2}}\sin \,2({{45}^{o}}+\theta )}{g}\]
                            \[=\frac{{{u}^{2}}\,\sin \,\,({{90}^{o}}-2\theta )}{g}\]
                            \[=\frac{{{u}^{2}}\,\cos \,2\theta }{g}\]
                For        \[\alpha =({{45}^{o}}+\theta ),\,{{R}_{2}}=\frac{{{u}^{2}}\,\sin \,2({{45}^{o}}+\theta )}{g}\]
                            \[=\frac{{{u}^{2}}\,\,\sin \,({{90}^{o}}+2\theta )}{g}\]
                            \[=\frac{{{u}^{2}}\,\cos \,\,2\theta }{g}\]
                Hence,  \[\frac{{{R}_{1}}}{{{R}_{2}}}=\frac{1}{1}\]
                or         \[{{R}_{1}}:{{R}_{2}}=1:1\]
                Note:    In the alternative method, we used the identity \[\sin ({{90}^{o}}-\theta )=\cos \theta \] and\[\sin ({{90}^{o}}+\theta )=\cos \theta \].


You need to login to perform this action.
You will be redirected in 3 sec spinner