NEET NEET SOLVED PAPER 2015 (Re)

  • question_answer
    Light of wavelength 500 nm is incident on a metal with work function 2.28 eV. The de-Broglie wavelength of the emitted electron is

    A)  \[<2.8\times {{10}^{-10}}m\]   

    B)  \[<2.8\times {{10}^{-9}}m\]

    C)         \[\le 2.8\times {{10}^{-9}}m\]   

    D)         \[\le 2.8\times {{10}^{-12}}m\]

    Correct Answer: C

    Solution :

    As, energy of photon, \[E=hv\] \[E=\frac{hc}{\lambda }\] \[\Rightarrow \,\,\,\,E=\frac{6.626\times {{10}^{-34}}\times 3\times {{10}^{8}}}{500\times {{10}^{-9}}}\] \[\Rightarrow \,\,\,\,E=\frac{0.0397\times {{10}^{-34}}\times {{10}^{8}}}{{{10}^{-9}}}=0.0397\times {{10}^{-21}}\text{J}\]                 \[E=\frac{0.0397\times {{10}^{-21}}}{1.6\times {{10}^{-19}}}=0.0248\times {{10}^{2}}eV\]                 \[=2.48\,eV\] According to Einstein's photoelectric emission, we have \[K{{E}_{\max }}=R-W=2.48-2.28=0.2eV\] For de-Broglie wavelength of the emitted electron, \[{{\lambda }_{e\,\min }}=\frac{12.27A}{\sqrt{K{{E}_{\max }}(eV)}}=\frac{12.27}{\sqrt{0.2}}\]                 \[=27.436\overset{{}^\circ }{\mathop{\text{A}}}\,\]                 \[=27.436\times {{10}^{-10}}m\] Thus, minimum wavelength of the emitted electron.                 \[{{\lambda }_{\min }}\,=2.7436\times {{10}^{-9}}\,m\]                 i.e.             \[\lambda \ge {{\lambda }_{\min }}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner